Solveeit Logo

Question

Mathematics Question on Probability

The value of (0.2)log5(14+18+16+....to)\left(0.2\right)^{\log_{\sqrt{5}}\left(\frac{1}{4} + \frac{1}{8} + \frac{1}{6} + .... to \, \infty\right)}

A

4

B

44565

C

2

D

44563

Answer

4

Explanation

Solution

0.2log5(14+18+16+....to)0.2^{\log_{\sqrt{5}}\left(\frac{1}{4} + \frac{1}{8} + \frac{1}{6} + .... to \infty\right)}
=(15)log5(12)=(15)2log5(12)= \left(\frac{1}{5}\right)^{\log _{\sqrt{5}} \left(\frac{1}{2}\right)} = \left(\frac{1}{5}\right)^{2 \log _{\sqrt{5}}}\left(\frac{1}{2}\right)
=(5)2log5(12)=(5)log54=4= \left(5\right)^{-2\log _{5}} \left(\frac{1}{2}\right) = \left(5\right)^{\log _{5}4} = 4