Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The value of λ\lambda for which the lines 1x3=y22λ=z32=x13λ=y11=6z7\frac{1-x}{3} = \frac{y-2}{2\lambda}=\frac {z-3}{2} = \frac{x-1}{3\lambda} =\frac{y-1}{1} =\frac {6-z}{7} are perpendicular to each other is

A

-1

B

-2

C

1

D

2

Answer

-2

Explanation

Solution

Given, 1x3\frac{1-x}{3}
=y22λ=\frac{y-2}{2\lambda}
=z32(i)=\frac{z-3}{2} \ldots\left(i\right)
and x13λ=y11=6z7(ii)\frac{x-1}{3\lambda} =\frac{y-1}{1} =\frac{6-z}{7} \ldots\left(ii\right)
Eqs.(i) \left(i\right) and (ii)\left(ii\right), can be written as
x13=y22λ=z32\frac{x-1}{-3}=\frac{y-2}{2\lambda}=\frac{z-3}{2}
and x13λ=y11 \frac{x-1}{3\lambda} =\frac{y-1}{1}
=z67=\frac{z-6}{-7}
Since, both are perpendicular to each other, then
(3)(3λ)+(2λ)(1)+(2)(7)=0\left(-3\right)\left(3\lambda\right)+\left(2\lambda\right)\left(1\right)+\left(2\right)\left(-7\right)=0
9λ+2λ14=0\Rightarrow -9\lambda+2\lambda-14=0
7λ=14\Rightarrow 7\lambda=-14
λ=2\Rightarrow \lambda=-2