Solveeit Logo

Question

Question: The value of \(\lambda \) for which the curve \({\left( {7x + 5} \right)^2} + {\left( {7y + 3} \righ...

The value of λ\lambda for which the curve (7x+5)2+(7y+3)2=λ2(4x+3y24)2{\left( {7x + 5} \right)^2} + {\left( {7y + 3} \right)^2} = {\lambda ^2}{\left( {4x + 3y - 24} \right)^2} represents a parabola is

  1. ±65 \pm \dfrac{6}{5}
  2. ±75 \pm \dfrac{7}{5}
  3. ±15 \pm \dfrac{1}{5}
  4. ±25 \pm \dfrac{2}{5}
Explanation

Solution

Compare the given equation of the curve with the standard equation of the second order ax2+by2+2hxy+2gx+2fy+c=0a{x^2} + b{y^2} + 2hxy + 2gx + 2fy + c = 0. Solve the condition h2=ab{h^2} = ab to find the condition on λ\lambda for which the given equation of the curve is a parabola.

Complete step-by-step answer:
The equation of the second order represents a parabola. For the standard equation ax2+by2+2hxy+2gx+2fy+c=0a{x^2} + b{y^2} + 2hxy + 2gx + 2fy + c = 0 to represent a parabola, h2=ab{h^2} = ab is the sufficient and necessary condition, where hh is the coefficient of 2xy2xy, aa is the coefficient of x2{x^2} and bb is the coefficient of y2{y^2}.
For the given equation of the curve (7x+5)2+(7y+3)2=λ2(4x+3y24)2{\left( {7x + 5} \right)^2} + {\left( {7y + 3} \right)^2} = {\lambda ^2}{\left( {4x + 3y - 24} \right)^2} ,we can simplify the equation as
49x2+25+70x+49y2+9+42y=λ2(16x2+9y2+576+24xy144y192x)49{x^2} + 25 + 70x + 49{y^2} + 9 + 42y = {\lambda ^2}\left( {16{x^2} + 9{y^2} + 576 + 24xy - 144y - 192x} \right)
On further simplifying by writing in the standard form, we get
x2(4916λ2)+y2(499λ2)24λ2xy+x(70+192λ2)+y(42+144λ2)+34576λ2=0{x^2}\left( {49 - 16{\lambda ^2}} \right) + {y^2}\left( {49 - 9{\lambda ^2}} \right) - 24{\lambda ^2}xy + x\left( {70 + 192{\lambda ^2}} \right) + y\left( {42 + 144{\lambda ^2}} \right) + 34 - 576{\lambda ^2} = 0
On comparing the equation x2(4916λ2)+y2(499λ2)24λ2xy+x(70+192λ2)+y(42+144λ2)+34576λ2=0{x^2}\left( {49 - 16{\lambda ^2}} \right) + {y^2}\left( {49 - 9{\lambda ^2}} \right) - 24{\lambda ^2}xy + x\left( {70 + 192{\lambda ^2}} \right) + y\left( {42 + 144{\lambda ^2}} \right) + 34 - 576{\lambda ^2} = 0 with the standard equation ax2+by2+2hxy+2gx+2fy+c=0a{x^2} + b{y^2} + 2hxy + 2gx + 2fy + c = 0, we get
a=4916λ2a = 49 - 16{\lambda ^2}, b=499λ2b = 49 - 9{\lambda ^2} and h=12λ2h = 12{\lambda ^2}
Substituting the values a=4916λ2a = 49 - 16{\lambda ^2}, b=499λ2b = 49 - 9{\lambda ^2} and h=12λ2h = 12{\lambda ^2} in the equation h2=ab{h^2} = ab to find the condition on λ\lambda for which the given equation of the curve is a parabola, we get
(12λ2)2=(4916λ2)(499λ2){\left( {12{\lambda ^2}} \right)^2} = \left( {49 - 16{\lambda ^2}} \right)\left( {49 - 9{\lambda ^2}} \right)
Solving the equation to find the value of λ\lambda .
144λ4=49216(49λ2)9(49λ2)+144λ4 49λ2(16+9)=492 λ2(25)=49 λ2=4925 λ=4925 λ=±75  144{\lambda ^4} = {49^2} - 16\left( {49{\lambda ^2}} \right) - 9\left( {49{\lambda ^2}} \right) + 144{\lambda ^4} \\\ 49{\lambda ^2}\left( {16 + 9} \right) = {49^2} \\\ {\lambda ^2}\left( {25} \right) = 49 \\\ {\lambda ^2} = \dfrac{{49}}{{25}} \\\ \lambda = \sqrt {\dfrac{{49}}{{25}}} \\\ \lambda = \pm \dfrac{7}{5} \\\
Thus the condition for which the given equation of the curve (7x+5)2+(7y+3)2=λ2(4x+3y24)2{\left( {7x + 5} \right)^2} + {\left( {7y + 3} \right)^2} = {\lambda ^2}{\left( {4x + 3y - 24} \right)^2} is a parabola is λ=±75\lambda = \pm \dfrac{7}{5}.
Hence, option B is the correct answer.

Note: For the standard equation ax2+by2+2hxy+2gx+2fy+c=0a{x^2} + b{y^2} + 2hxy + 2gx + 2fy + c = 0 to represent a parabola, h2=ab{h^2} = ab is the sufficient and necessary condition. The solution to the equation x2=a2{x^2} = {a^2} has two solutions, that are aa and a - a.