Solveeit Logo

Question

Question: The value of k, such that the equation \({\text{2}}{{\text{x}}^2} + 2{{\text{y}}^2} - 6{\text{x + 8y...

The value of k, such that the equation 2x2+2y26x + 8y + k = 0{\text{2}}{{\text{x}}^2} + 2{{\text{y}}^2} - 6{\text{x + 8y + k = 0}} represents a point circle, is
A. 0 B. 25 C. 252 D. - 252  {\text{A}}{\text{. 0}} \\\ {\text{B}}{\text{. 25}} \\\ {\text{C}}{\text{. }}\dfrac{{25}}{2} \\\ {\text{D}}{\text{. - }}\dfrac{{25}}{2} \\\

Explanation

Solution

Hint: In order to determine the value of k, we rewrite the given equation in the form of the equation of the circle. Also, for a point circle the radius is equal to zero.

Complete step-by-step answer:

Given, 2x2+2y26x + 8y + k = 0{\text{2}}{{\text{x}}^2} + 2{{\text{y}}^2} - 6{\text{x + 8y + k = 0}} represents a point circle.
The equation of a circle: (x - a)2+(y - b)2=r2{\left( {{\text{x - a}}} \right)^2} + {\left( {{\text{y - b}}} \right)^2} = {{\text{r}}^2}
Now we write the given equation in this form.
Divide 2x2+2y26x + 8y + k = 0{\text{2}}{{\text{x}}^2} + 2{{\text{y}}^2} - 6{\text{x + 8y + k = 0}} by 2
x2+y23x + 4y + k2=0{{\text{x}}^2} + {{\text{y}}^2} - 3{\text{x + 4y + }}\dfrac{{\text{k}}}{2} = 0
Now we rearrange this equation, also add and subtract 4 and 94\dfrac{9}{4}to convert this equation in the form of the equation of circle.
x23x + 94+y2+4y + 4944+k2=0{{\text{x}}^2} - {\text{3x + }}\dfrac{9}{4} + {{\text{y}}^2} + 4{\text{y + 4}} - \dfrac{{ - 9}}{4} - 4 + \dfrac{{\text{k}}}{2} = 0
(x - 32)2+(y + 2)2=254k2{\left( {{\text{x - }}\dfrac{3}{2}} \right)^2} + {\left( {{\text{y + 2}}} \right)^2} = \dfrac{{25}}{4} - \dfrac{{\text{k}}}{2}
Now, for a point circle radius is equal to zero. On comparing radius terms in both the equations we get,
254k2\dfrac{{25}}{4} - \dfrac{{\text{k}}}{2}= 0
⟹k = 504\dfrac{{50}}{4}=252\dfrac{{25}}{2}
Hence, option C is the correct answer.

Note: In order to solve this type of problems the key is to be able to rewrite the given equation in terms of the equation of a circle. We then equate the radius term to 0, to find the answer. A point circle is just a point, a degenerate circle.