Solveeit Logo

Question

Question: The value of \( {K_p}{\text{ = 2}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ bar}} \) i...

The value of Kp = 2.0 × 1010 bar{K_p}{\text{ = 2}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ bar}} is given at 450 K450{\text{ K}} for the given reaction at equilibrium.
2 SO2(g) + O2(g)  2 SO3(g){\text{2 S}}{{\text{O}}_2}(g){\text{ + }}{{\text{O}}_2}(g){\text{ }} \rightleftharpoons {\text{ 2 S}}{{\text{O}}_3}(g)
What is the value of Kc{K_c} at the same temperature?
(i) 7.4 × 1011 L mol1(i){\text{ 7}}{\text{.4 }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ L mo}}{{\text{l}}^{ - 1}}
(ii) 7.4 × 1011 L mol1(ii){\text{ 7}}{\text{.4 }} \times {\text{ 1}}{{\text{0}}^{ - 11}}{\text{ L mo}}{{\text{l}}^{ - 1}}
(iii) 3.7 × 1011 L mol1(iii){\text{ 3}}{\text{.7 }} \times {\text{ 1}}{{\text{0}}^{ - 11}}{\text{ L mo}}{{\text{l}}^{ - 1}}
(iv) 3.7 × 1011 L mol1(iv){\text{ 3}}{\text{.7 }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ L mo}}{{\text{l}}^{ - 1}}

Explanation

Solution

Hint : We will find the difference between the number of gaseous products and reactants. With the help of this change in gaseous number of moles we will find the value of Kc{K_c} from the relation between Kp{K_p} and Kc{K_c} for a reaction at equilibrium.
For finding Kp{K_p} or Kc{K_c} :
Kp = Kc × (RT)Δng{K_p}{\text{ = }}{K_c}{\text{ }} \times {\text{ }}{\left( {{\text{RT}}} \right)^{\Delta {n_g}}}
Here, RR is gas constant, TT is the temperature at which the reaction takes place and Δng\Delta {n_g} is the change in the number of gaseous moles of the reaction.

Complete Step By Step Answer:
For a reaction at equilibrium we can find the value of Kp{K_p} or Kc{K_c} by using the relation between them as,
Kp = Kc × (RT)Δng{K_p}{\text{ = }}{K_c}{\text{ }} \times {\text{ }}{\left( {{\text{RT}}} \right)^{\Delta {n_g}}}
Firstly we will find the change in number of gaseous moles as:
Δng = ng(products) - ng(reactants)\Delta {n_g}{\text{ = }}{n_{g({\text{products}})}}{\text{ - }}{n_{g({\text{reactants}})}}
For the given reaction it can be calculated as,
2 SO2(g) + O2(g)  2 SO3(g){\text{2 S}}{{\text{O}}_2}(g){\text{ + }}{{\text{O}}_2}(g){\text{ }} \rightleftharpoons {\text{ 2 S}}{{\text{O}}_3}(g)
Δng = ng(products) - ng(reactants)\Delta {n_g}{\text{ = }}{n_{g({\text{products}})}}{\text{ - }}{n_{g({\text{reactants}})}}
We can observe that the number of gaseous moles of the product is two while the total number of gaseous moles of reactant is three. Therefore substituting these value we get change in number of gaseous moles for the whole reaction as,
Δng = 2 - 3 = - 1\Delta {n_g}{\text{ = 2 - 3 = - 1}}
Hence Δng = - 1\Delta {n_g}{\text{ = - 1}} . Now substituting the all given values we get the result as,
Kp = Kc × (RT)Δng{K_p}{\text{ = }}{K_c}{\text{ }} \times {\text{ }}{\left( {{\text{RT}}} \right)^{\Delta {n_g}}}
On putting, Kp = 2.0 × 1010 bar{K_p}{\text{ = 2}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ bar}} , R = 0.0831 L bar K1 mol1R{\text{ = 0}}{\text{.0831 L bar }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} , T= 450 KT = {\text{ 450 K}} and Δng = - 1\Delta {n_g}{\text{ = - 1}}
2.0 × 1010 bar = Kc × (0.0831 L bar K1 mol1 × 450 K)1{\text{2}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ bar = }}{K_c}{\text{ }} \times {\text{ }}{\left( {{\text{0}}{\text{.0831 L bar }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}{\text{ }} \times {\text{ 450 K}}} \right)^{ - 1}}
Kc = (× 1010 bar) ×(0.0831 L bar K1 mol1 × 450 K){{\text{K}}_c}{\text{ = }}\left( {{\text{2 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ bar}}} \right){\text{ }} \times \left( {{\text{0}}{\text{.0831 L bar }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}{\text{ }} \times {\text{ 450 K}}} \right)
Kc = 7.4 × 1011 L mol1{{\text{K}}_c}{\text{ = 7}}{\text{.4 }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ L mo}}{{\text{l}}^{ - 1}}
Therefore the value of Kc{K_c} for the given reaction at equilibrium is equal to 7.4 × 1011 L mol1{\text{7}}{\text{.4 }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ L mo}}{{\text{l}}^{ - 1}}

Therefore the correct option is (i) 7.4 × 1011 L mol1(i){\text{ 7}}{\text{.4 }} \times {\text{ 1}}{{\text{0}}^{11}}{\text{ L mo}}{{\text{l}}^{ - 1}} .

Note :
We cannot use the above relation between Kp{K_p} and Kc{K_c} when the temperature of reaction is not constant. If the temperature varies then we cannot use this relation. The value of gas constant RR must be chosen correctly according to given units of Kp{K_p} . If we use other values of gas constant then our answer would be different. We must include gaseous moles only while finding Δng\Delta {n_g} for the reaction.