Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

The value of kNk \in \mathbb{N} for which the integral In=01(1xk)ndx,nN,I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N}, satisfies 147I20=148I21147 \, I_{20} = 148 \, I_{21} is:

A

10

B

8

C

14

D

7

Answer

7

Explanation

Solution

The given integral is:
In=01(1xk)ndx.I_n = \int_0^1 (1 - x^k)^n dx.
Using integration by parts, we get:
In=nknk+1In1.I_n = \frac{nk}{nk + 1} I_{n-1}.
Iterating this formula, the relationship becomes:
InIn1=nknk+1.\frac{I_n}{I_{n-1}} = \frac{nk}{nk + 1}.
Given:
I21I20=147148,\frac{I_{21}}{I_{20}} = \frac{147}{148},
we substitute into the formula:
21k21k+1=147148.\frac{21k}{21k + 1} = \frac{147}{148}.
Cross-multiplying and solving:
14821k=147(21k+1),148 \cdot 21k = 147 \cdot (21k + 1),
14821k=14721k+147,148 \cdot 21k = 147 \cdot 21k + 147,
21k=147    k=7.21k = 147 \implies k = 7.