Solveeit Logo

Question

Question: The value of \(k\) for which the following system of equations possess a non-zero solution is: \(4...

The value of kk for which the following system of equations possess a non-zero solution is:
4x+ky+2z=04x + ky + 2z = 0
kx+4y+z=0kx + 4y + z = 0
2x+2y+z=02x + 2y + z = 0
\,
A)3 B)2 C)1 D)4  A) \,3 \\\ B) \,2 \\\ C) \,1 \\\ D) \,4 \\\

Explanation

Solution

Form a 3×33 \times 3 determinant matrix for these linear equations by using their coefficients such as xx coefficient in first yy coefficient in second and zz coefficient in third. Then, find the values of kk for which determinant is zero.

Complete step-by-step answer:
The linear equations are
4x+ky+2z=0 kx+4y+z=0 2x+2y+z=0  4x + ky + 2z = 0 \\\ kx + 4y + z = 0 \\\ 2x + 2y + z = 0 \\\
The condition for these linear equations to possess a non-zero solution is that the determinant formed by their coefficients is equal to zero i.e.
\left| {\begin{array}{*{20}{c}} 4&k;&2 \\\ k&4&1 \\\ 2&2&1 \end{array}} \right| = 0
Opening the determinant
4(42)k(k2)+2(2k8)=0 k26k+8=0  \Rightarrow 4(4 - 2) - k(k - 2) + 2(2k - 8) = 0 \\\ \Rightarrow {k^2} - 6k + 8 = 0 \\\
Sum is 6 - 6 and product is 88
k24k2k+8=0 k(k4)2(k4)=0 (k2)(k4)=0 k2=0,k4=0 k=2,k=4  \Rightarrow {k^2} - 4k - 2k + 8 = 0 \\\ \Rightarrow k(k - 4) - 2(k - 4) = 0 \\\ \Rightarrow (k - 2)(k - 4) = 0 \\\ \Rightarrow k - 2 = 0\,\,,\,\,k - 4 = 0 \\\ \Rightarrow k = 2\,\,,\,\,k = 4 \\\
Hence kk has two values 4&24\,\&\,2 for which these linear equations possess a non-zero solution.

So, the correct answer is “Option A”.

Note: The condition for which equations possess no solution is a1a2=b1b2c1c2\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}} and for for infinite many solution is a1a2=b1b2=c1c2\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}.This is correct but for two linear equations.
The condition for three equations is:
Δ=0\Delta = 0\, and one of Δ1,Δ2,Δ3{\Delta _1},{\Delta _2},{\Delta _3} is zero for no solution.
Δ=0\Delta = 0\, and one of Δ1=Δ2=Δ3=0{\Delta _1} = {\Delta _2} = {\Delta _3} = 0 is zero for an infinite solution.
Where,
\Delta = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}} \\\ {{a_2}}&{{b_2}}&{{c_2}} \\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right| , {\Delta _1} = \left| {\begin{array}{*{20}{c}} {{d_1}}&{{b_1}}&{{c_1}} \\\ {{d_2}}&{{b_2}}&{{c_2}} \\\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right| , {\Delta _2} =\left| {\begin{array}{*{20}{c}} {{a_1}}&{{d_1}}&{{c_1}} \\\ {{a_2}}&{{d_2}}&{{c_2}} \\\ {{a_3}}&{{d_3}}&{{c_3}} \end{array}} \right| , {\Delta _3} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{d_1}} \\\ {{a_2}}&{{b_2}}&{{d_2}} \\\ {{a_3}}&{{b_3}}&{{d_3}} \end{array}} \right|