Solveeit Logo

Question

Mathematics Question on limits of trigonometric functions

The value of k for which the equation (K2)x2+8x+K+4=0(K - 2)x^2 + 8x + K + 4 = 0 has both roots real, distinct and negative is

A

66

B

33

C

44

D

11

Answer

33

Explanation

Solution

(K2)x2+8x+K+4=0(K-2) x^2 + 8x + K + 4 = 0 If real roots then, 828^{2} 4(K2)(K+4)>0-4\left(K-2\right)\left(K+4\right) > 0 K2+2KS<16\Rightarrow K^{2} + 2K-S<16 (K+6)(K4)<0\Rightarrow \left(K+6\right)\left(K-4\right)<0 6<K<4\Rightarrow -6 < K < 4 If both roots are negative then αβ\alpha\beta is +ve+ve K+4K2>0K>4\Rightarrow \frac{K+4}{K-2} >0 \Rightarrow K >-4 Also, K2K+4>0K>2\frac{K-2}{K+4} >0 \Rightarrow K >2 Roots are real so, 6<K<4- 6 < K < 4 So, 6 and 4 are not correct. Since, K>2K > 2, so 1 is also not correct value of KK. K=3\therefore K=3