Question
Question: The value of is equal to \[\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\sqrt{\mathop{2}^{1947}...
The value of is equal to n=0∑19472n+219471
A) 21945487
B) 219471946
C) 219471947
D) 219471948
Solution
Hint: In this type of question we always write series in expanded form first and then write the same series in reverse form. After that we can add both forms of series and get a desired expression.
Complete step by step solution:
Considern=0∑19472n+219471
We can write it as
x=n=0∑19472n+2219471………………………………………………….(i)
On expanding
x=n=0∑19472n+2219471=20+2219471+21+2219471+.................+21947+2219471 ……………………(ii)
Reverse the equation (ii)
x=21947+2219471+21946+2219471+.................+21+2219471+20+2219471
Based on above pattern we can write this
⇒x=n=0∑194721947−n+2219471…………………………………………………….(iii)
On adding equation (ii) and (ii)
⇒x+x=n=0∑19472n+2219471+n=0∑194721947−n+2219471
⇒2x=n=0∑19472n+2219471+21947−n+2219471
From the above expression we can take 2nas common from first term and 221947as common from second term in denominator.
⇒2x=n=0∑19472n1+221947−n1+22194721947−n−21947+11
⇒2x=n=0∑19472n1+221947−n1+221947221947−n+11
⇒2x=n=0∑19471+221947−n12n1+2219471
⇒2x=n=0∑19471+221947−n1221947221947−n+1
⇒2x=n=0∑19472219471
⇒2x=2219471948
⇒x=221947974
⇒x=221945487
⇒x=21945487
Hence option (a) is correct.
Note: These types of problems are called sequence and series problems. You have to try solving these sums by making small amounts of changes and try to use progression formulas.