Solveeit Logo

Question

Question: The value of integral \(\int _ { 1 / \pi } ^ { 2 / \pi } \frac { \sin ( 1 / x ) } { x ^ { 2 } } d x ...

The value of integral 1/π2/πsin(1/x)x2dx=\int _ { 1 / \pi } ^ { 2 / \pi } \frac { \sin ( 1 / x ) } { x ^ { 2 } } d x =

A

2

B

1- 1

C

0

D

1

Answer

1

Explanation

Solution

Put t=1xdt=1x2dxt = \frac { 1 } { x } \Rightarrow d t = - \frac { 1 } { x ^ { 2 } } d xas t=π2t = \frac { \pi } { 2 }and π\pi

=π/2πsintdt=[cost]π/2π= - \int _ { \pi / 2 } ^ { \pi } \sin t d t = - [ \cos t ] _ { \pi / 2 } ^ { \pi }

=[cosπcos(π2)]=1= - \left[ \cos \pi - \cos \left( \frac { \pi } { 2 } \right) \right] = 1 .