Solveeit Logo

Question

Question: The value of integral \(\int_{}^{}\frac{(1 - \cos\theta)^{2/7}}{(1 + \cos\theta)^{9/7}}\) dq is –...

The value of integral (1cosθ)2/7(1+cosθ)9/7\int_{}^{}\frac{(1 - \cos\theta)^{2/7}}{(1 + \cos\theta)^{9/7}} dq is –

A

1711\frac { 17 } { 11 } (tanθ2)117+c\left( \tan\frac{\theta}{2} \right)^{\frac{11}{7}} + c

B

711\frac { 7 } { 11 } (cosθ2)117+c\left( \cos\frac{\theta}{2} \right)^{\frac{11}{7}} + c

C

711\frac { 7 } { 11 } (sinθ2)117+c\left( \sin\frac{\theta}{2} \right)^{\frac{11}{7}} + c

D

None of these

Answer

1711\frac { 17 } { 11 } (tanθ2)117+c\left( \tan\frac{\theta}{2} \right)^{\frac{11}{7}} + c

Explanation

Solution

Let I = (1cosθ)2/7(1+cosθ)9/7\int_{}^{}\frac{(1 - \cos\theta)^{2/7}}{(1 + \cos\theta)^{9/7}} dq

= (2sin2θ/2)2/7(2cos2θ/2)9/7\int_{}^{}\frac{(2\sin^{2}\theta/2)^{2/7}}{(2\cos^{2}\theta/2)^{9/7}}dq = 12\frac { 1 } { 2 } (sinθ/2)4/7(cosθ/2)18/7\int_{}^{}\frac{(\sin\theta/2)^{4/7}}{(\cos\theta/2)^{18/7}}dq

Put θ2\frac{\theta}{2}= t, \ dθ2\frac{d\theta}{2} = dt

\ I = (sint)4/7(cost)18/7\int_{}^{}\frac{(\sin t)^{4/7}}{(\cos t)^{18/7}}dt (Here m + n = –2)

(tant)4/7\int_{}^{}{(\tan t)^{4/7}}sec2 tdt

Put tan t = u \ sec2x dt = du

u4/7du\int_{}^{}{u^{4/7}du}= u11/411/7\frac{u^{11/4}}{11/7} + c = 711\frac{7}{11} (tan t)11/7 + c

= 711\frac { 7 } { 11 } (tanθ2)11/7\left( \tan\frac{\theta}{2} \right)^{11/7} + c

I4,3 = cos4x\int_{}^{}{\cos^{4}x}sin3x dx