Question
Question: The value of integral \(\int_{0}^{\infty}\frac{x\log x}{(1 + x^{2})^{2}}\)dx is –...
The value of integral ∫0∞(1+x2)2xlogxdx is –
A
1
B
0
C
2
D
None of these
Answer
0
Explanation
Solution
I = ∫01(1+x2)2xlogxdx + ∫1∞(1+x2)2xlogxdx
= I1 + I2.
Put x = t1 in I2 and adjust the limits
I2 = ∫10(1+t21)2t1logt1.(t2−1)dt= ∫01(1+t2)2−tlogtdt
I2 = – ∫01(1+x2)2xlogxdx = –I1
Hence I1 + I2 = 0.