Question
Question: The value of integral \(\int_{0}^{1}\frac{x^{b} - 1}{\log x}dx\) is...
The value of integral ∫01logxxb−1dx is
A
logb
B
2log(b+1)
C
3logb
D
None of these
Answer
None of these
Explanation
Solution
Let I(b)=∫01logxxb−1dx⇒I′(b)=∫01logxxblogxdx
(If I(α)=∫0bf(x,α)dx, then I′(α)=∫0bf′(x,α)dx, where f′(x,α) is derivative of f(x,α) w.r.t. α keeping x constant)
I′(b)=∫01xbdx=b+11
⇒ I(b)=∫b+1db+c=log(b+1)+c
If b=0, then I(b)=0, so c=0⇒I(b)=log(b+1).