Solveeit Logo

Question

Question: The value of integral \(\int_{0}^{1}\frac{x^{b} - 1}{\log x}dx\) is...

The value of integral 01xb1logxdx\int_{0}^{1}\frac{x^{b} - 1}{\log x}dx is

A

logb\log b

B

2log(b+1)2\log(b + 1)

C

3logb3\log b

D

None of these

Answer

None of these

Explanation

Solution

Let I(b)=01xb1logxdxI(b)=01xblogxlogxdxI(b) = \int_{0}^{1}\frac{x^{b} - 1}{\log x}dx \Rightarrow I'(b) = \int_{0}^{1}{\frac{x^{b}\log x}{\log x}dx}

(If I(α)=0bf(x,α)dxI(\alpha) = \int_{0}^{b}{f(x,\alpha)dx}, then I(α)=0bf(x,α)dxI'(\alpha) = \int_{0}^{b}{f'(x,\alpha)dx}, where f(x,α)f'(x,\alpha) is derivative of f(x,α)f(x,\alpha) w.r.t. α\alpha keeping x constant)

I(b)=01xbdx=1b+1I^{'}(b) = \int_{0}^{1}{x^{b}dx = \frac{1}{b + 1}}

I(b)=dbb+1+c=log(b+1)+cI(b) = \int_{}^{}{\frac{db}{b + 1} + c = \log(b + 1) + c}

If b=0b = 0, then I(b)=0I(b) = 0, so c=0c = 0I(b)=log(b+1)I(b) = \log(b + 1).