Solveeit Logo

Question

Question: The value of integral, \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot d...

The value of integral, π43π4x1+sinxdx\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}
( a ) π2(2+1)\dfrac{\pi }{2}(\sqrt{2}+1)
( b ) π(21)\pi (\sqrt{2}-1)
( c ) 2π(21)2\pi (\sqrt{2}-1)
( d ) π2\pi \sqrt{2}

Explanation

Solution

To solve this question, we will use property of definite integration such as abf(x)dx=F(a)F(b)\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)} and abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}. Also, we will use some trigonometric properties and trigonometric values to solve this question also some algebraic identity such as (a+b)(ab)=a2b2(a+b)(a-b)={{a}^{2}}-{{b}^{2}}. Hence, using these we can solve the integral π43π4x1+sinxdx\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}

Complete step by step answer:
To solve such a question, we must know some properties of definite integration and indefinite integration..
One of the most important property of definite integration is abf(x)dx=F(a)F(b)\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)} ,where F is the integration of f ( x ) and a is lower limit and b is upper limit.
Another important property of definite integral is abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}.
Also, xndx=xn+1n+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n}+C} , where C is constant which does not appear I definite integral but does appear in indefinite integral.
Now, we have to evaluate I=π43π4x1+sinxdxI=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}………( i ),
So, using property abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}. We get
a = π4\dfrac{\pi }{4} and b = 3π4\dfrac{3\pi }{4}
so, a + b  x = π4+3π4xa\text{ }+\text{ }b\text{ }\text{ }-x\text{ }=\text{ }\dfrac{\pi }{4}+\dfrac{3\pi }{4}-x
a + b  x = πxa\text{ }+\text{ }b\text{ }\text{ }-x\text{ }=\text{ }\pi -x
So, I=π43π4πx1+sin(πx)dxI=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi -x}{1+\sin (\pi -x)}\cdot dx}
We know that sin(πθ)=sinθ\sin (\pi -\theta )=\sin \theta ,
So, I=π43π4πx1+sinxdxI=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi -x}{1+\sin x}\cdot dx}
I=π43π4π1+sinxdxπ43π4x1+sinxdxI=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}-\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}……. ( ii )
Adding ( i ) and ( ii ), we get
I+I=π43π4π1+sinxdxπ43π4x1+sinxdx+π43π4x1+sinxdxI+I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}-\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}+\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}
On solving we get
2I=π43π4π1+sinxdx2I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}
Multiplying numerator and denominator by 1sinx1-\sin x, we get
2I=π43π4π1+sinx×1sinx1sinxdx2I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\times \dfrac{1-\sin x}{1-\sin x}\cdot dx}
I=π2π43π41sinx(1+sinx)(1sinx)dxI=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{(1+\sin x)(1-\sin x)}dx}
Using, algebraic identity, (a+b)(ab)=a2b2(a+b)(a-b)={{a}^{2}}-{{b}^{2}} ,we get
I=π2π43π41sinx(1sin2x)dxI=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{(1-{{\sin }^{2}}x)}dx}
We know that, 1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x ,
So, I=π2π43π41sinxcos2xdxI=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{{{\cos }^{2}}x}dx}
Or, I=π2π43π41cos2xdxπ2π43π4sinxcos2xdxI=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\sin x}{{{\cos }^{2}}x}dx}
Now, as cosx=1secx\cos x=\dfrac{1}{\sec x} , tanx=sinxcosx\tan x=\dfrac{\sin x}{cosx}
So, I=π2π43π4sec2xdxπ2π43π4tanxsecxdxI=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{{{\sec }^{2}}xdx}-\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\tan x\sec xdx}
Now, we know that, sec2xdx=tanx\int{{{\sec }^{2}}x\cdot dx=\operatorname{tanx}} and secxtanxdx=secx\int{\sec x\tan x\cdot dx=\sec x},
So, I=π2[tanxsecx]π43π4I=\dfrac{\pi }{2}{{\left[ \tan x-\sec x \right]}_{\dfrac{\pi }{4}}}^{\dfrac{3\pi }{4}}
Putting values of upper limit and lower limit, we get
I=π2[(tan3π4sec3π4)(tanπ4secπ4)]I=\dfrac{\pi }{2}\left[ \left( \tan \dfrac{3\pi }{4}-\sec \dfrac{3\pi }{4} \right)-\left( \tan \dfrac{\pi }{4}-\sec \dfrac{\pi }{4} \right) \right]
As, tanπ4=1,secπ4=2\tan \dfrac{\pi }{4}=1,\sec \dfrac{\pi }{4}=\sqrt{2}
I=π2[(tan(ππ4)sec(ππ4))(12)]I=\dfrac{\pi }{2}\left[ \left( \tan \left( \pi -\dfrac{\pi }{4} \right)-\sec \left( \pi -\dfrac{\pi }{4} \right) \right)-\left( 1-\sqrt{2} \right) \right]
As, tan(ππ4)=1\tan \left( \pi -\dfrac{\pi }{4} \right)=-1and sec(ππ4)=2\sec \left( \pi -\dfrac{\pi }{4} \right)=-\sqrt{2}
So,I=π2[(1+2)(12)]I=\dfrac{\pi }{2}\left[ \left( -1+\sqrt{2} \right)-\left( 1-\sqrt{2} \right) \right]
On solving, we get
I=π22(21)I=\dfrac{\pi }{2}\cdot 2(\sqrt{2}-1)
I=π(21)I=\pi (\sqrt{2}-1)

So, the correct answer is “Option b”.

Note: While integrating the definite integral always use the correct formula to evaluate the integration and always try to skip calculation error as it may change the answer of the solution or may make the solution more complex. One must know all the properties and formula of indefinite and definite integrals.