Question
Question: The value of integral, \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot d...
The value of integral, 4π∫43π1+sinxx⋅dx
( a ) 2π(2+1)
( b ) π(2−1)
( c ) 2π(2−1)
( d ) π2
Solution
To solve this question, we will use property of definite integration such as a∫bf(x)dx=F(a)−F(b) and a∫bf(x)dx=a∫bf(a+b−x)dx. Also, we will use some trigonometric properties and trigonometric values to solve this question also some algebraic identity such as (a+b)(a−b)=a2−b2. Hence, using these we can solve the integral 4π∫43π1+sinxx⋅dx
Complete step by step answer:
To solve such a question, we must know some properties of definite integration and indefinite integration..
One of the most important property of definite integration is a∫bf(x)dx=F(a)−F(b) ,where F is the integration of f ( x ) and a is lower limit and b is upper limit.
Another important property of definite integral is a∫bf(x)dx=a∫bf(a+b−x)dx.
Also, ∫xndx=nxn+1+C , where C is constant which does not appear I definite integral but does appear in indefinite integral.
Now, we have to evaluate I=4π∫43π1+sinxx⋅dx………( i ),
So, using property a∫bf(x)dx=a∫bf(a+b−x)dx. We get
a = 4π and b = 43π
so, a + b −x = 4π+43π−x
a + b −x = π−x
So, I=4π∫43π1+sin(π−x)π−x⋅dx
We know that sin(π−θ)=sinθ ,
So, I=4π∫43π1+sinxπ−x⋅dx
I=4π∫43π1+sinxπ⋅dx−4π∫43π1+sinxx⋅dx……. ( ii )
Adding ( i ) and ( ii ), we get
I+I=4π∫43π1+sinxπ⋅dx−4π∫43π1+sinxx⋅dx+4π∫43π1+sinxx⋅dx
On solving we get
2I=4π∫43π1+sinxπ⋅dx
Multiplying numerator and denominator by 1−sinx, we get
2I=4π∫43π1+sinxπ×1−sinx1−sinx⋅dx
I=2π4π∫43π(1+sinx)(1−sinx)1−sinxdx
Using, algebraic identity, (a+b)(a−b)=a2−b2 ,we get
I=2π4π∫43π(1−sin2x)1−sinxdx
We know that, 1−sin2x=cos2x ,
So, I=2π4π∫43πcos2x1−sinxdx
Or, I=2π4π∫43πcos2x1dx−2π4π∫43πcos2xsinxdx
Now, as cosx=secx1 , tanx=cosxsinx
So, I=2π4π∫43πsec2xdx−2π4π∫43πtanxsecxdx
Now, we know that, ∫sec2x⋅dx=tanx and ∫secxtanx⋅dx=secx,
So, I=2π[tanx−secx]4π43π
Putting values of upper limit and lower limit, we get
I=2π[(tan43π−sec43π)−(tan4π−sec4π)]
As, tan4π=1,sec4π=2
I=2π[(tan(π−4π)−sec(π−4π))−(1−2)]
As, tan(π−4π)=−1and sec(π−4π)=−2
So,I=2π[(−1+2)−(1−2)]
On solving, we get
I=2π⋅2(2−1)
I=π(2−1)
So, the correct answer is “Option b”.
Note: While integrating the definite integral always use the correct formula to evaluate the integration and always try to skip calculation error as it may change the answer of the solution or may make the solution more complex. One must know all the properties and formula of indefinite and definite integrals.