Solveeit Logo

Question

Question: The value of integral \[\int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {x - {x^3}} \right)}^{\dfrac{...

The value of integral 131(xx3)13x4dx\int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {x - {x^3}} \right)}^{\dfrac{1}{3}}}}}{{{x^4}}}} dx
A. 66
B. 00
C. 33
D. 44

Explanation

Solution

We will solve this question by doing a simple integration formula which states that for a given function
f(x)f\left( x \right) the integration will be equals to as below:
f(x)dx=F(x)+C\int {f\left( x \right)dx = {\text{F}}\left( x \right) + {\text{C}}} , if
F(x)=f(x){\text{F}}'\left( x \right) = f\left( x \right). Here,
\int {} is the integral symbol,
f(x)f\left( x \right) is called integrand,
xx will be our variable,
dxdx is known as the differential of the variable
xx, and C{\text{C}} is called the constant.

Complete step-by-step solution:
Step 1: By taking x3{x^3} as common from the numerator of the expression
131(xx3)13x4dx\int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {x - {x^3}} \right)}^{\dfrac{1}{3}}}}}{{{x^4}}}} dx, we get:
131(x3)13(1x21)13x4dx\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {{x^3}} \right)}^{\dfrac{1}{3}}}{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^4}}}} dx
By dividing the powers of the term (x3)13{\left( {{x^3}} \right)^{\dfrac{1}{3}}} in the above expression we get:
131x(1x21)13x4dx\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{x{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^4}}}} dx
By doing division w.r.t to
xx in the above expression we get:
131(1x21)13x3dx\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx
Step 2: We will assume that
t=1x21t = \dfrac{1}{{{x^2}}} - 1, so by differentiating it w.r.t
xx we get:
dtdx=2x3\Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{{ - 2}}{{{x^3}}}
(1x21=1x2x2)\left( {\because \dfrac{1}{{{x^2}}} - 1 = \dfrac{{1 - {x^2}}}{{{x^2}}}} \right)
By bringing xx terms at one side of the above expression we get:
dt2=dxx3\Rightarrow \dfrac{{ - dt}}{2} = \dfrac{{dx}}{{{x^3}}}
Now, as per the given information from the question, the value of
xx varies from 13\dfrac{1}{3} to 11, so by substituting these values in the expression
t=1x21t = \dfrac{1}{{{x^2}}} - 1 we get:
At x=13x = \dfrac{1}{3}:
t=1(13)21\Rightarrow t = \dfrac{1}{{{{\left( {\dfrac{1}{3}} \right)}^2}}} - 1
By simplifying the above expression, we get:
t=91\Rightarrow t = 9 - 1
By doing the final subtraction, we get:
t=8\Rightarrow t = 8
Similarly, At x=1x = 1:
t=1121\Rightarrow t = \dfrac{1}{{{1^2}}} - 1
By simplifying the above expression, we get:t=11 \Rightarrow t = 1 - 1
By doing the final subtraction, we get:t=0 \Rightarrow t = 0
So, we can say that when xx varies from 13\dfrac{1}{3} to 11, the value tt varies from 00 to 88.
Step 3: By substituting the value of tt in the expression
131(1x21)13x3dx\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx, we get:
131(1x21)13x3dx=1208t13dt\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = \dfrac{1}{2}\int\limits_0^8 {{t^{\dfrac{1}{3}}}} dt
By doing integration in the RHS side of the expression we get:
131(1x21)13x3dx=12[t13+113+1]80\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = \dfrac{1}{2}{\left[ {\dfrac{{{t^{\dfrac{1}{3} + 1}}}}{{\dfrac{1}{3} + 1}}} \right]^8}_0
By adding the powers inside the brackets of the RHS side of the above expression we get:
131(1x21)13x3dx=12[t4343]80\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}}dx=\dfrac{1}{2}{\left[{\dfrac{{{t^{\dfrac{4}{3}}}}}{{\dfrac{4}{3}}}} \right]^8}_0
By bringing 33 from the denominator to the numerator side of the RHS side of the above expression we get:
131(1x21)13x3dx=12[3t434]80\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = \dfrac{1}{2}{\left[ {\dfrac{{3{t^{\dfrac{4}{3}}}}}{4}} \right]^8}_0
By putting the limits tt in the RHS side of the above expression, we get:
131(1x21)13x3dx=12(03(8)434)\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = - \dfrac{1}{2}\left( {0 - \dfrac{{3{{\left( 8 \right)}^{\dfrac{4}{3}}}}}{4}} \right)
By simplifying the above expression, we can write it as below:
131(1x21)13x3dx=12×(34)×(8)43\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = \dfrac{1}{2} \times \left( {\dfrac{3}{4}} \right) \times {\left( 8 \right)^{\dfrac{4}{3}}}
By writing 8=238 = {2^3} in the above expression we get:
131(1x21)13x3dx=12×(34)×(23)43\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = \dfrac{1}{2} \times \left( {\dfrac{3}{4}} \right) \times {\left( {{2^3}} \right)^{\dfrac{4}{3}}}
By replacing
(23)43=24{\left( {{2^3}} \right)^{\dfrac{4}{3}}} = {2^4}, we get:
131(1x21)13x3dx=12×(34)×24\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = \dfrac{1}{2} \times \left( {\dfrac{3}{4}} \right) \times {2^4}
By simplifying the above expression, we get:
131(1x21)13x3dx=12×(34)×2×2×2×2\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = \dfrac{1}{2} \times \left( {\dfrac{3}{4}} \right) \times 2 \times 2 \times 2 \times 2
By solving the above expression, we get the required answer as below:
131(1x21)13x3dx=6\Rightarrow \int\limits_{\dfrac{1}{3}}^1 {\dfrac{{{{\left( {\dfrac{1}{{{x^2}}} - 1} \right)}^{\dfrac{1}{3}}}}}{{{x^3}}}} dx = 6

\because Option A is the correct answer.

Note: Students need to be very careful while solving the integration of powers. For example, the integration of xn{x^n} will be equals to as below:
xndx=xn+1n+1+C\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + {\text{C}}}