Solveeit Logo

Question

Question: The value of integral \[\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}\] is (a) \[\df...

The value of integral 0x6ex2dx\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} is
(a) 6!27\dfrac{6!}{{{2}^{7}}}
(b) 6!26\dfrac{6!}{{{2}^{6}}}
(c) 266!{{2}^{6}}6!
(d) 276!{{2}^{7}}6!

Explanation

Solution

Hint: Integrate the given function using product rule of integration of two functions. Apply the limits to evaluate the value of function near infinity and zero. Substitute the values to calculate the definite integral of the given function.

Complete step by step answer:
We have to calculate the value of the integral 0x6ex2dx\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}. We will use the product rule of integration of two functions to get the integration of a given function and then apply the limits.
We know that integration of product of two functions u(x)v(x)u\left( x \right)v\left( x \right) is given by u(x)v(x)dx=u(x)v(x)dx(ddxu(x)v(x)dx)dx\int{u\left( x \right)v\left( x \right)dx=u\left( x \right)\int{v\left( x \right)dx-\int{\left( \dfrac{d}{dx}u\left( x \right)\int{v\left( x \right)dx} \right)dx}}}.
Substituting u(x)=ex2,v(x)=x6u\left( x \right)={{e}^{\dfrac{-x}{2}}},v\left( x \right)={{x}^{6}} in the above equation, we have x6ex2dx=x6ex2dx(ddx(x6)ex2dx)dx.....(1)\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}={{x}^{6}}\int{{{e}^{\dfrac{-x}{2}}}dx}-\int{\left( \dfrac{d}{dx}\left( {{x}^{6}} \right)\int{{{e}^{\dfrac{-x}{2}}}dx} \right)dx}.....\left( 1 \right).
We know that integration of eax{{e}^{ax}} is eaxdx=eaxa\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a}.
Substituting a=12a=\dfrac{-1}{2} in the above equation, we have ex2dx=2ex2.....(2)\int{{{e}^{-\dfrac{x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}.....\left( 2 \right).
We know that differentiation of y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=6,b=0a=1,n=6,b=0 in the above equation, we have ddx(x6)=6x5.....(3)\dfrac{d}{dx}\left( {{x}^{6}} \right)=6{{x}^{5}}.....\left( 3 \right).
Substituting equation (2) and (3) in equation (1), we have x6ex2dx=x6(2ex2)6x5(2ex2)dx\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}={{x}^{6}}\left( -2{{e}^{\dfrac{-x}{2}}} \right)-\int{6{{x}^{5}}\left( -2{{e}^{\dfrac{-x}{2}}} \right)dx}.
We can rewrite the above equation as x6ex2dx=2ex2x6+12ex2x5dx\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}+12\int{{{e}^{\dfrac{-x}{2}}}{{x}^{5}}dx} because cf(x)dx=cf(x)dx\int{cf\left( x \right)dx}=c\int{f\left( x \right)dx}, where c is a constant.
We will further simplify the above equation using the product rule of integration of two functions.
Thus, we have x6ex2dx=2ex2x6+12ex2x5dx=2ex2x6+12(x5ex2dx(d(x5)dxex2dx)dx)\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}+12\int{{{e}^{\dfrac{-x}{2}}}{{x}^{5}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}+12\left( {{x}^{5}}\int{{{e}^{\dfrac{-x}{2}}}dx}-\int{\left( \dfrac{d\left( {{x}^{5}} \right)}{dx}\int{{{e}^{\dfrac{-x}{2}}}dx} \right)dx} \right).
Simplifying the above expression, we have x6ex2dx=2ex2x6+12(x5(2ex2)2ex2(5x4)dx)\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}+12\left( {{x}^{5}}\left( -2{{e}^{\dfrac{-x}{2}}} \right)-\int{-2{{e}^{\dfrac{-x}{2}}}\left( 5{{x}^{4}} \right)dx} \right).
Thus, we have x6ex2dx=2ex2x624ex2x5+120ex2x4dx\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}+120\int{{{e}^{\dfrac{-x}{2}}}{{x}^{4}}dx}.
Further simplifying the above expression, we have x6ex2dx=2ex2x624ex2x5+120(x4ex2dx(d(x4)dxex2dx)dx)\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}+120\left( {{x}^{4}}\int{{{e}^{\dfrac{-x}{2}}}dx}-\int{\left( \dfrac{d\left( {{x}^{4}} \right)}{dx}\int{{{e}^{\dfrac{-x}{2}}}dx} \right)dx} \right).
Thus, we have x6ex2dx=2ex2x624ex2x5240x4ex2+960x3ex2dx\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}+960\int{{{x}^{3}}{{e}^{\dfrac{-x}{2}}}dx}.
Simplifying the above expression, we have x6ex2dx=2ex2x624ex2x5240x4ex2+960(x3ex2dx(d(x3)dxex2dx)dx)\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}+960\left( {{x}^{3}}\int{{{e}^{\dfrac{-x}{2}}}dx}-\int{\left( \dfrac{d\left( {{x}^{3}} \right)}{dx}\int{{{e}^{\dfrac{-x}{2}}}dx} \right)dx} \right).
Thus, we have x6ex2dx=2ex2x624ex2x5240x4ex21920x3ex2+5760x2ex2dx\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}+5760\int{{{x}^{2}}{{e}^{\dfrac{-x}{2}}}dx}.
Simplifying the above expression, we have x6ex2dx=2ex2x624ex2x5240x4ex21920x3ex2+5760(x2ex2dx(d(x2)dxex2dx)dx)\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}+5760\left( {{x}^{2}}\int{{{e}^{\dfrac{-x}{2}}}dx}-\int{\left( \dfrac{d\left( {{x}^{2}} \right)}{dx}\int{{{e}^{\dfrac{-x}{2}}}dx} \right)dx} \right).
Thus, we have x6ex2dx=2ex2x624ex2x5240x4ex21920x3ex211520x2ex2+23040xex2dx\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}-11520{{x}^{2}}{{e}^{\dfrac{-x}{2}}}+23040\int{x{{e}^{\dfrac{-x}{2}}}dx}.
Simplifying the above expression, we have x6ex2dx=2ex2x624ex2x5240x4ex21920x3ex211520x2ex2+23040(xex2dx(d(x)dxex2dx)dx)\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}-11520{{x}^{2}}{{e}^{\dfrac{-x}{2}}}+23040\left( x\int{{{e}^{\dfrac{-x}{2}}}dx}-\int{\left( \dfrac{d\left( x \right)}{dx}\int{{{e}^{\dfrac{-x}{2}}}dx} \right)dx} \right).
Thus, we have x6ex2dx=2ex2x624ex2x5240x4ex21920x3ex211520x2ex246080xex292160ex2\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}-11520{{x}^{2}}{{e}^{\dfrac{-x}{2}}}-46080x{{e}^{\dfrac{-x}{2}}}-92160{{e}^{\dfrac{-x}{2}}}.
We have evaluated the value of the integral x6ex2dx\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}.
We will now evaluate the value of integral at x=0x=0 and xx\to \infty .
We will firstly evaluate the value of x6ex2dx=2ex2x624ex2x5240x4ex21920x3ex211520x2ex246080xex292160ex2\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}-11520{{x}^{2}}{{e}^{\dfrac{-x}{2}}}-46080x{{e}^{\dfrac{-x}{2}}}-92160{{e}^{\dfrac{-x}{2}}} as xx\to \infty .
As xx\to \infty , we observe ex2e=0{{e}^{\dfrac{-x}{2}}}\to {{e}^{-\infty }}=0.
Thus, we have [2ex2x624ex2x5240x4ex21920x3ex211520x2ex246080xex292160ex2]x=0{{\left[ -2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}-11520{{x}^{2}}{{e}^{\dfrac{-x}{2}}}-46080x{{e}^{\dfrac{-x}{2}}}-92160{{e}^{\dfrac{-x}{2}}} \right]}_{x\to \infty }}=0.
Now, we will evaluate the value of x6ex2dx=2ex2x624ex2x5240x4ex21920x3ex211520x2ex246080xex292160ex2\int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}=-2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}-11520{{x}^{2}}{{e}^{\dfrac{-x}{2}}}-46080x{{e}^{\dfrac{-x}{2}}}-92160{{e}^{\dfrac{-x}{2}}} at x=0x=0.
At x=0x=0, we have [2ex2x624ex2x5240x4ex21920x3ex211520x2ex246080xex292160ex2]x=0=92160{{\left[ -2{{e}^{\dfrac{-x}{2}}}{{x}^{6}}-24{{e}^{\dfrac{-x}{2}}}{{x}^{5}}-240{{x}^{4}}{{e}^{\dfrac{-x}{2}}}-1920{{x}^{3}}{{e}^{\dfrac{-x}{2}}}-11520{{x}^{2}}{{e}^{\dfrac{-x}{2}}}-46080x{{e}^{\dfrac{-x}{2}}}-92160{{e}^{\dfrac{-x}{2}}} \right]}_{x=0}}=-92160.
We know that 0x6ex2dx=[x6ex2dx]x[x6ex2dx]x=0\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}={{\left[ \int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} \right]}_{x\to \infty }}-{{\left[ \int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} \right]}_{x=0}}.
Thus, we have 0x6ex2dx=[x6ex2dx]x[x6ex2dx]x=0=0(92160)=92160\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}={{\left[ \int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} \right]}_{x\to \infty }}-{{\left[ \int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} \right]}_{x=0}}=0-\left( -92160 \right)=92160.
We can rewrite 92160 as 92160=27×720=27×6!92160={{2}^{7}}\times 720={{2}^{7}}\times 6!.
Thus, we have 0x6ex2dx=[x6ex2dx]x[x6ex2dx]x=0=0(92160)=92160=92160=27×6!\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}={{\left[ \int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} \right]}_{x\to \infty }}-{{\left[ \int{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} \right]}_{x=0}}=0-\left( -92160 \right)=92160=92160={{2}^{7}}\times 6!.
Hence, the value of integral 0x6ex2dx\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx} is 27×6!{{2}^{7}}\times 6!.

So, Option (d) is the right answer.

Note: The integration of 0x6ex2dx\int\limits_{0}^{\infty }{{{x}^{6}}{{e}^{\dfrac{-x}{2}}}dx}represents the area of the function x6ex2{{x}^{6}}{{e}^{\dfrac{-x}{2}}} in the range (0,)\left( 0,\infty \right). One must be careful while applying the limit xx\to \infty to the integral. If we simply substitute x=x=\infty , we will get an incorrect answer. It’s necessary to use the formula for the integral product of two functions. Otherwise, we won’t be able to solve this question.