Question
Mathematics Question on Definite Integral
The value of integral 0∫11+x1−xdx is
A
2π+1
B
2π−1
C
−1
D
1
Answer
2π−1
Explanation
Solution
Let I=0∫11+x1−xdx
=0∫11−x21−xdx
=0∫11−x21dx−0∫11+x2xdx
=[sin−1x]01−0∫11−x2xdx
Put t2=1−x2
⇒2tdt=−2xdx
⇒tdt=−xdx
∴I=(sin−11−sin−10)+1∫0ttdt
=2π+[t]10=2π−1
Let I=0∫11+x1−xdx
Put x=cos2θ
⇒dx=−2sin2θdθ
∴I=−π/4∫01+cos2θ1−cos2θ⋅2sinθdθ
=−2π/4∫0cosθsinθ⋅2sinθcosθdθ
=−2π/4∫0(1−cos2θ)dθ
=−2[θ−2sin2θ]π/40
=−2[0−(4π−21)]
=2π−1