Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of integral 011x1+xdx\int\limits_0^1 \, \sqrt{\frac{1-x}{1+x}}dx is

A

π2+1\frac{\pi}{2} + 1

B

π21\frac{\pi}{2} - 1

C

1-1

D

11

Answer

π21\frac{\pi}{2} - 1

Explanation

Solution

Let I=011x1+xdxI = \int\limits^{1}_{0} \sqrt{\frac{1-x}{1+x}} dx
=011x1x2dx= \int\limits^{1}_{0} \frac{1-x}{\sqrt{1-x^{2}}}dx
=0111x2dx01x1+x2dx= \int\limits^{1}_{0} \frac{1}{\sqrt{1-x^{2}}} dx - \int\limits^{1}_{0} \frac{x}{\sqrt{1+x^{2}}}dx
=[sin1x]0101x1x2dx= \left[\sin^{-1}x\right]^{1}_{0} - \int\limits^{1}_{0} \frac{x}{\sqrt{1-x^{2}}} dx
Put t2=1x2t^{2} = 1 -x^{2}
2tdt=2xdx\Rightarrow \, 2t \, dt = - 2x \, dx
tdt=xdx\Rightarrow \, t \, dt = -x \, dx
I=(sin11sin10)+10ttdt\therefore I = \left(\sin^{-1} 1 - \sin^{-1}0\right)+\int\limits_{1}^{0} \frac{t}{t} dt
=π2+[t]10=π21= \frac{\pi}{2} + \left[t\right]^{0}_{1} = \frac{\pi}{2} - 1
Let I=011x1+xdxI=\int\limits_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x
Put x=cos2θx=\cos 2 \,\theta
dx=2sin2θdθ\Rightarrow d x=-2 \sin 2 \,\theta \,d \,\theta
I=π/401cos2θ1+cos2θ2sinθdθ\therefore I=-\int\limits_{\pi / 4}^{0} \sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}} \cdot 2 \sin \theta \,d\, \theta
=2π/40sinθcosθ2sinθcosθdθ=-2 \int\limits_{\pi / 4}^{0} \frac{\sin \theta}{\cos \theta} \cdot 2 \sin \theta \cos \theta \,d \,\theta
=2π/40(1cos2θ)dθ=-2 \int\limits_{\pi / 4}^{0}(1-\cos 2 \theta) \,d \,\theta
=2[θsin2θ2]π/40=-2\left[\theta-\frac{\sin 2 \theta}{2}\right]_{\pi / 4}^{0}
=2[0(π412)]=-2\left[0-\left(\frac{\pi}{4}-\frac{1}{2}\right)\right]
=π21=\frac{\pi}{2}-1