Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of integral ex(cosx+sinxcos2x)dx\int{e^x}(\frac{cosx+sinx}{cos^2x})dx

A

ex(sinxsinxcosx)+Ce^{x} (sin \, x-sin\, x\, cos\, x)+C

B

ex(sinxcosx)+Ce^{x} (sin\,x \, cos\, x)+C

C

exsecx+ce^xsecx+c

D

ex(sinx+cosx)+Ce^{x} (sin \, x+cos \, x)+ C

Answer

exsecx+ce^xsecx+c

Explanation

Solution

The correct answer is C:exsecx+ce^xsecx+c
I=ex(cosx+sinxcos2x)dx\int{e^x}(\frac{cosx+sinx}{cos^2x})dx
I=ex(1cosx+tanx.secx)dxI=\int{e^x}(\frac{1}{cosx}+tanx.secx)dx
I=ex(secx+secx.tanx)dxI=\int{e^x}(secx+secx.tanx)dx
Here, f(x)=secxf(x)=secx.tanxf(x)=secx \therefore f'(x)=secx.tanx
I=ex[f(x)+f(x)]dx\therefore I=\int{e^x}[f(x)+f'(x)]dx
I=exsecx+cI=e^xsecx+c
integration
integration