Solveeit Logo

Question

Question: The value of integral \(\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {\sin 2\theta } }}} \) can...

The value of integral dθcos3θsin2θ\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {\sin 2\theta } }}} can be expressed as irrational function of tanθ\tan \theta as:-
A. 25(tan2θ+5)tanθ+c\dfrac{{\sqrt 2 }}{5}\left( {\sqrt {{{\tan }^2}\theta + 5} } \right)\tan \theta + c
B. 25(tan2θ+5)tanθ+c\dfrac{2}{5}\left( {{{\tan }^2}\theta + 5} \right)\sqrt {\tan \theta } + c
C. 25(tan2θ+5)tanθ+c\dfrac{{\sqrt 2 }}{5}\left( {{{\tan }^2}\theta + 5} \right)\sqrt {\tan \theta } + c
D. 25(tan2θ+5)tanθ+c\sqrt {\dfrac{2}{5}} \left( {{{\tan }^2}\theta + 5} \right)\sqrt {\tan \theta } + c

Explanation

Solution

We will simplify the given expression using the trigonometric formulas, sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta , tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }}. Then, substitute tanθ=t\tan \theta = t in the given expression. At last, integrate the simplified expression using the formula, xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c.

Complete step-by-step answer:
We have to find the value of dθcos3θsin2θ\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {\sin 2\theta } }}}
We know that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
dθcos3θ2sinθcosθ\int {\dfrac{{d\theta }}{{{{\cos }^3}\theta \sqrt {2\sin \theta \cos \theta } }}}
Multiply and divide the expression by cosθ\cos \theta and simplify it further.
dθcos4θ2sinθcosθcosθ dθcos4θ2sinθcosθcos2θ dθcos4θ2sinθcosθ  \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \dfrac{{\sqrt {2\sin \theta \cos \theta } }}{{\cos \theta }}}}} \\\ \Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {\dfrac{{2\sin \theta \cos \theta }}{{{{\cos }^2}\theta }}} }}} \\\ \Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {\dfrac{{2\sin \theta }}{{\cos \theta }}} }}} \\\
Also, tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
dθcos4θ2tanθ\Rightarrow \int {\dfrac{{d\theta }}{{{{\cos }^4}\theta \sqrt {2\tan \theta } }}}
We also know that cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }}
Hence,
sec4θdθ2tanθ sec2θ(sec2θ)dθ2tanθ  \Rightarrow \int {\dfrac{{{{\sec }^4}\theta d\theta }}{{\sqrt {2\tan \theta } }}} \\\ \Rightarrow \int {\dfrac{{{{\sec }^2}\theta \left( {{{\sec }^2}\theta } \right)d\theta }}{{\sqrt {2\tan \theta } }}} \\\
Now, sec2θ=1tan2θ{\sec ^2}\theta = 1 - {\tan ^2}\theta
sec2θ(1tan2θ)dθ2tanθ\int {\dfrac{{{{\sec }^2}\theta \left( {1 - {{\tan }^2}\theta } \right)d\theta }}{{\sqrt {2\tan \theta } }}}
We will solve the integration by substitution. We will substitute tanθ=t\tan \theta = t, then sec2θdθ=dt{\sec ^2}\theta d\theta = dt
(1t2)dt2t (dt2tt2dt2t)  \int {\dfrac{{\left( {1 - {t^2}} \right)dt}}{{\sqrt {2t} }}} \\\ \Rightarrow \int {\left( {\dfrac{{dt}}{{\sqrt {2t} }} - \dfrac{{{t^2}dt}}{{\sqrt {2t} }}} \right)} \\\
Now, we know that xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c, therefore, the above integration can be simplified as,
12((t)12+1(12+1)+t5252)+c 12(2t+2t2t5)+c  \Rightarrow \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{{{\left( t \right)}^{ - \dfrac{1}{2} + 1}}}}{{\left( { - \dfrac{1}{2} + 1} \right)}} + \dfrac{{{t^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}}} \right) + c \\\ \Rightarrow \dfrac{1}{{\sqrt 2 }}\left( {2\sqrt t + \dfrac{{2{t^2}\sqrt t }}{5}} \right) + c \\\
Take 2t2\sqrt t common from the bracket,
2t(1+t25)+c\sqrt {2t} \left( {1 + \dfrac{{{t^2}}}{5}} \right) + c
Substitute back the value of t=tanθt = \tan \theta
Hence, the value of the integration is
2tanθ(1+tan2θ5)+c 25tanθ(5+tan2θ)+c  \sqrt {2\tan \theta } \left( {1 + \dfrac{{{{\tan }^2}\theta }}{5}} \right) + c \\\ \Rightarrow \dfrac{{\sqrt 2 }}{5}\sqrt {\tan \theta } \left( {5 + {{\tan }^2}\theta } \right) + c \\\
Thus, option C is correct.

Note: Students must know how to simplify expression using trigonometric identities. Also, the expression given in the question is indefinite integral. But, if the integration has upper and lower limits, then the integral is known as a definite integral.