Solveeit Logo

Question

Question: The value of \(\int_{}^{}\frac{x^{24}}{x^{10} + 1}\)dx ; where t = x<sup>5</sup>....

The value of x24x10+1\int_{}^{}\frac{x^{24}}{x^{10} + 1}dx ; where t = x5.

A

15\frac { 1 } { 5 } [t33t+tan1t]\left\lbrack \frac{t^{3}}{3} - t + \tan^{- 1}t \right\rbrack

B

(t33t+tan1t)\left( \frac{t^{3}}{3} - t + \tan^{- 1}t \right)

C

15\frac { 1 } { 5 } (t33+ttan1t)\left( \frac{t^{3}}{3} + t - \tan^{- 1}t \right)

D

(t33+ttan1t)\left( \frac{t^{3}}{3} + t - \tan^{- 1}t \right)

Answer

\frac { 1 } { 5 }$$\left\lbrack \frac{t^{3}}{3} - t + \tan^{- 1}t \right\rbrack

Explanation

Solution

x24x10+1\int \frac { x ^ { 24 } } { x ^ { 10 } + 1 }dx = x20.x4(x5)2+1\int_{}^{}\frac{x^{20}.x^{4}}{(x^{5})^{2} + 1}dt Put x5 = t

Ž 15\frac { 1 } { 5 } t4t2+1\int_{}^{}\frac{t^{4}}{t^{2} + 1}dt = 15\frac { 1 } { 5 } t41+1t2+1\int_{}^{}\frac{t^{4} - 1 + 1}{t^{2} + 1}dt

=15\frac { 1 } { 5 } (t33t+tan1t)\left( \frac{t^{3}}{3} - t + \tan^{- 1}t \right), t = x5