Question
Question: The value of \(\int_{}^{}\frac{x^{24}}{x^{10} + 1}\)dx ; where t = x<sup>5</sup>....
The value of ∫x10+1x24dx ; where t = x5.
A
51 [3t3−t+tan−1t]
B
(3t3−t+tan−1t)
C
51 (3t3+t−tan−1t)
D
(3t3+t−tan−1t)
Answer
\frac { 1 } { 5 }$$\left\lbrack \frac{t^{3}}{3} - t + \tan^{- 1}t \right\rbrack
Explanation
Solution
∫x10+1x24dx = ∫(x5)2+1x20.x4dt Put x5 = t
Ž 51 ∫t2+1t4dt = 51 ∫t2+1t4−1+1dt
=51 (3t3−t+tan−1t), t = x5