Question
Question: The value of \(\int_{}^{}\frac{\sin x}{\sin 4x}\)dx is –...
The value of ∫sin4xsinxdx is –
A
41log sinx+1sinx−1 – 21log 2sinx+12sinx−1+ c
B
81logcosx+1cosx−1 – 221log 2cosx+12cosx−1+ c
C
81logsinx+1sinx−1 – 421log 2sinx+12sinx−1+ c
D
None of these
Answer
81logsinx+1sinx−1 – 421log 2sinx+12sinx−1+ c
Explanation
Solution
The given integrand can be written as
4cosxcos2x1= 4(1−sin2x)(1−2sin2x)cosx, hence
∫sin4xsinxdx= 41 ∫(1−t2)(1−2t2)dt (t = sin x)
= 41 ∫[t2−11−t2−1/21]t
= 41 [21logt+1t−1−21logt+1/2t−1/2] + c
=81logsinx−1sinx−1–421log 2sinx+12sinx−1+ c