Solveeit Logo

Question

Question: The value of \(\int_{}^{}{\frac{\cos^{3}x + \cos^{5}x}{\sin^{2}x + \sin^{4}x}dx}\) is...

The value of cos3x+cos5xsin2x+sin4xdx\int_{}^{}{\frac{\cos^{3}x + \cos^{5}x}{\sin^{2}x + \sin^{4}x}dx} is

A

sinx6tan1(sinx)+C\sin x - 6\tan^{- 1}\left( \sin x \right) + C

B

sinx2(sinx)1+C\sin x - 2\left( \sin x \right)^{- 1} + C

C

sinx2(sinx)16tan1(sinx)+C\sin x - 2\left( \sin x \right)^{- 1} - 6\tan^{- 1}\left( \sin x \right) + C

D

sinx2(sinx)1+5tan1(sinx)+C\sin x - 2\left( \sin x \right)^{- 1} + 5\tan^{- 1}\left( \sin x \right) + C

Answer

sinx2(sinx)16tan1(sinx)+C\sin x - 2\left( \sin x \right)^{- 1} - 6\tan^{- 1}\left( \sin x \right) + C

Explanation

Solution

R(sinx,cosx)=cos3x+cos5xsin2x+sin4xR ( \sin x , \cos x ) = \frac { \cos ^ { 3 } x + \cos ^ { 5 } x } { \sin ^ { 2 } x + \sin ^ { 4 } x }R(sinx,cosx)=cos3xcos5xsin2x+sin4x=cos3x+cos5xsin2x+sin4xR ( \sin x , - \cos x ) = \frac { - \cos ^ { 3 } x - \cos ^ { 5 } x } { \sin ^ { 2 } x + \sin ^ { 4 } x } = - \frac { \cos ^ { 3 } x + \cos ^ { 5 } x } { \sin ^ { 2 } x + \sin ^ { 4 } x }

= R(sinx,cosx)- R\left( \sin x,\cos x \right)

Therefore, we substitute sinx = t, so that cosxdx= dt.

cos3x+cos5xsin2x+sin4xdx=cosx[(1sin2x)+(1sin2x)2]sin2x+sin4xdx\int_{}^{}{\frac{\cos^{3}x + \cos^{5}x}{\sin^{2}x + \sin^{4}x}dx = \int_{}^{}{\frac{\cos x\left\lbrack \left( 1 - \sin^{2}x \right) + \left( 1 - \sin^{2}x \right)^{2} \right\rbrack}{\sin^{2}x + \sin^{4}x}dx}}

(1t2)(2t2)t2+t4dt=(1+2t261+t2)dt\int_{}^{}{\frac{\left( 1 - t^{2} \right)\left( 2 - t^{2} \right)}{t^{2} + t^{4}}dt = \int_{}^{}{\left( 1 + \frac{2}{t^{2}} - \frac{6}{1 + t^{2}} \right)dt}}

=t2t6tan1t+Ct - \frac{2}{t} - 6\tan^{- 1}t + C = sinx2(sinx)16tan1(sinx)+C\sin x - 2\left( \sin x \right)^{- 1} - 6\tan^{- 1}\left( \sin x \right) + C