Question
Question: The value of \(\int_{}^{}{\frac{\cos^{3}x + \cos^{5}x}{\sin^{2}x + \sin^{4}x}dx}\) is...
The value of ∫sin2x+sin4xcos3x+cos5xdx is
A
sinx−6tan−1(sinx)+C
B
sinx−2(sinx)−1+C
C
sinx−2(sinx)−1−6tan−1(sinx)+C
D
sinx−2(sinx)−1+5tan−1(sinx)+C
Answer
sinx−2(sinx)−1−6tan−1(sinx)+C
Explanation
Solution
R(sinx,cosx)=sin2x+sin4xcos3x+cos5x⇒ R(sinx,−cosx)=sin2x+sin4x−cos3x−cos5x=−sin2x+sin4xcos3x+cos5x
= −R(sinx,cosx)
Therefore, we substitute sinx = t, so that cosxdx= dt.
∫sin2x+sin4xcos3x+cos5xdx=∫sin2x+sin4xcosx[(1−sin2x)+(1−sin2x)2]dx
∫t2+t4(1−t2)(2−t2)dt=∫(1+t22−1+t26)dt
=t−t2−6tan−1t+C = sinx−2(sinx)−1−6tan−1(sinx)+C