Solveeit Logo

Question

Question: The value of \(\int_{}^{}\frac{2x^{3} - 3x^{2} + 5x + 6}{x^{2} + 3x + 2}dx\) is...

The value of 2x33x2+5x+6x2+3x+2dx\int_{}^{}\frac{2x^{3} - 3x^{2} + 5x + 6}{x^{2} + 3x + 2}dx is

A

x2+3x+4lnx2+3x+2+12lnx+1x+2+cx^{2} + 3x + 4\ln|x^{2} + 3x + 2| + 12\ln\frac{x + 1}{x + 2} + c

B

x+3x2+4lnx+112ln(x+2)+cx + 3x^{2} + 4\ln|x + 1| - 12\ln(x + 2) + c

C

(x2+3x)+8\left( x ^ { 2 } + 3 x \right) + 8 lnx+1(x+2)2+c\ln\frac{|x + 1}{(x + 2)^{2}} + c

D

None of these

Answer

\left( x ^ { 2 } + 3 x \right) + 8$$\ln\frac{|x + 1}{(x + 2)^{2}} + c

Explanation

Solution

2x33x2+5x+6x2+3x+2dx\int_{}^{}\frac{2x^{3} - 3x^{2} + 5x + 6}{x^{2} + 3x + 2}dx

= ((2x+3)8xx2+3x+2)dx\int_{}^{}{\left( (2x + 3) - \frac{8x}{x^{2} + 3x + 2} \right)dx}

=(2x+3)4(2x+3)dxx2+3x+2+12dx(x+1)(x+2)=(x2+3x)4lnx2+3x+2+12dxx+112dxx+2\int_{}^{}{(2x + 3) - 4\int_{}^{}\frac{(2x + 3)dx}{x^{2} + 3x + 2} + 12\int_{}^{}\frac{dx}{(x + 1)(x + 2)}} = (x^{2} + 3x) - 4\ln|x^{2} + 3x + 2| + 12\int_{}^{}{\frac{dx}{x + 1} - 12}\int_{}^{}\frac{dx}{x + 2}= (x2+3x)4ln(x+1)4ln(x+2)+12lnx+1x+2+c(x^{2} + 3x) - 4\ln(x + 1) - 4\ln(x + 2) + 12\ln\frac{x + 1}{x + 2} + c = x23x+8ln(x+1)16ln(x+2)+cx^{2} - 3x + 8\ln(x + 1) - 16\ln(x + 2) + c

= (x23x)+8lnx+1(x+2)2+c(x^{2} - 3x) + 8\ln\frac{|x + 1|}{(x + 2)^{2}} + c.