Solveeit Logo

Question

Question: The value of \(\int_{a}^{a + (\pi/2)}{(\sin^{4}x + \cos^{4}x)dx}\) is...

The value of aa+(π/2)(sin4x+cos4x)dx\int_{a}^{a + (\pi/2)}{(\sin^{4}x + \cos^{4}x)dx} is

A

Independent of aa

B

a(π2)2a\left( \frac{\pi}{2} \right)^{2}

C

3π8\frac{3\pi}{8}

D

3πa28\frac{3\pi a^{2}}{8}

Answer

3π8\frac{3\pi}{8}

Explanation

Solution

Since sin4x+cos4x\sin^{4}x + \cos^{4}xis a periodic function with period π2,\frac{\pi}{2}, therefore aa+(π/2)(sin4x+cos4x) dx\int_{a}^{a + (\pi/2)}{(\sin^{4}x + \cos^{4}x)\ dx}

=0π/2(sin4x+cos4x)dx=20π/2sin4xdx=3Γ(5/2)Γ(1/2)2Γ(4+0+22)=3π8= \int_{0}^{\pi/2}{(\sin^{4}x + \cos^{4}x)dx} = 2\int_{0}^{\pi/2}{\sin^{4}xdx = \frac{3\Gamma(5/2)\Gamma(1/2)}{2\Gamma\left( \frac{4 + 0 + 2}{2} \right)} = \frac{3\pi}{8}}.