Solveeit Logo

Question

Question: The value of \(\int_{–2n}^{2n + \frac{1}{2}}{(\sin\pi x)\left\{ \frac{x}{2} \right\} dx}\) is (where...

The value of 2n2n+12(sinπx){x2}dx\int_{–2n}^{2n + \frac{1}{2}}{(\sin\pi x)\left\{ \frac{x}{2} \right\} dx} is (where {x} denotes the fractional part of x)

A

2nπ+1π2\frac{–2n\pi + 1}{\pi^{2}}

B

nπ\frac{n}{\pi}

C

(n+1)π\frac{(n + 1)}{\pi}

D

2nπ1π2\frac{2n\pi –1}{\pi^{2}}

Answer

2nπ+1π2\frac{–2n\pi + 1}{\pi^{2}}

Explanation

Solution

I = 2n2n+12(sinπx){x2}dx\int_{–2n}^{2n + \frac{1}{2}}{(\sin\pi x)\left\{ \frac{x}{2} \right\} dx}

=2n

02(sinπx)x2dx\int_{0}^{2}{(\sin\pi x)\frac{x}{2}dx}+01/2(sinπx)x2dx\int_{0}^{1/2}{(\sin\pi x)\frac{x}{2}dx}
= 2nπ+1π2\frac{–2n\pi + 1}{\pi^{2}}