Solveeit Logo

Question

Question: The value of \(\int_{–2}^{2}\left\{ p\mathcal{l}n\left( \frac{1 + x}{1–x} \right) + q\mathcal{l}n\le...

The value of 22{pln(1+x1x)+qln(1x1+x)2+r}\int_{–2}^{2}\left\{ p\mathcal{l}n\left( \frac{1 + x}{1–x} \right) + q\mathcal{l}n\left( \frac{1–x}{1 + x} \right)^{–2} + r \right\}dx

depends on -

A

p

B

q

C

r

D

q & p

Answer

r

Explanation

Solution

22{pln(1+x1x)+qln(1x1+x)2+γ}\int_{–2}^{2}\left\{ p\mathcal{l}n\left( \frac{1 + x}{1–x} \right) + q\mathcal{l}n\left( \frac{1–x}{1 + x} \right)^{–2} + \gamma \right\}dx

= p 22ln(1+x1x)\int_{–2}^{2}{\mathcal{l}n\left( \frac{1 + x}{1–x} \right)}dx–2q22ln(1x1+x)\int_{–2}^{2}{\mathcal{l}n\left( \frac{1–x}{1 + x} \right)}dx + 22γdx\int_{–2}^{2}{\gamma dx}

= p × 0 – 2q × 0 + 4g = 4 g