Solveeit Logo

Question

Question: The value of \(\int_{1/e}^{\tan x}{\frac{tdt}{1 + t^{2}} +}\int_{1/e}^{\cot x}\frac{dt}{t\left( 1 + ...

The value of 1/etanxtdt1+t2+1/ecotxdtt(1+t2)\int_{1/e}^{\tan x}{\frac{tdt}{1 + t^{2}} +}\int_{1/e}^{\cot x}\frac{dt}{t\left( 1 + t^{2} \right)} is equal to

A

1

B

1/2

C

π/4

D

None of these

Answer

1

Explanation

Solution

Let I (x) = 1/etanxtdt1+t2+1/ecotxdtt(1+t2)\int_{1/e}^{\tan x}{\frac{tdt}{1 + t^{2}} +}\int_{1/e}^{\cot x}\frac{dt}{t\left( 1 + t^{2} \right)}

= 1/etanxtdt1+t2+1/ecotx(1tt1+t2)dt\int_{1/e}^{\tan x}{\frac{tdt}{1 + t^{2}} +}\int_{1/e}^{\cot x}{\left( \frac{1}{t} - \frac{t}{1 + t^{2}} \right)dt}

= cotxtanxtdt1+t2+1/ecotx1tdt= 12ln(1+t2)cotxtanx+ lnt1/ecotx\int_{\cot x}^{\tan x}{\frac{tdt}{1 + t^{2}} +}\int_{1/e}^{\cot x}{\frac{1}{t}dt} = \left. \ \frac{1}{2}\ln(1 + t^{2}) \right|_{\cot x}^{\tan x} + \left. \ \ln t \right|_{1/e}^{\cot x}= – ln cot x + ln cot x – ln 1e\frac{1}{e} = 1