Solveeit Logo

Question

Question: The value of \(\int_{1}^{16}{\tan^{- 1}\sqrt{\sqrt{x} - 1}\mspace{6mu} dx}\) is...

The value of 116tan1x16mudx\int_{1}^{16}{\tan^{- 1}\sqrt{\sqrt{x} - 1}\mspace{6mu} dx} is

A

16π3\frac{16\pi}{3} + 232\sqrt{3}

B

43π\frac{4}{3}\pi232\sqrt{3}

C

43π\frac{4}{3}\pi + 232\sqrt{3}

D

163π\frac{16}{3}\pi232\sqrt{3}

Answer

163π\frac{16}{3}\pi232\sqrt{3}

Explanation

Solution

Integrating by parts, the given integral is equal to

x tan–1  x1116\left. \ \sqrt{\sqrt{x} - 1} \right|_{1}^{16} 116xx14xx1- \int_{1}^{16}{\frac{x}{\sqrt{x}}\frac{1}{4\sqrt{x}\sqrt{\sqrt{x} - 1}}}dx

= 163π\frac{16}{3}\pi14116dxx1\frac{1}{4}\int_{1}^{16}\frac{dx}{\sqrt{\sqrt{x} - 1}}

= 163π\frac{16}{3}\pi14034t(1+t2)tdt\frac{1}{4}\int_{0}^{\sqrt{3}}{\frac{4t(1 + t^{2})}{t}dt} (x\sqrt{x}= 1 + t2)

= 163π\frac{16}{3}\pi(3+3)\left( \sqrt{3} + \sqrt{3} \right) = 163\frac{16}{3}p – 23\sqrt{3}