Solveeit Logo

Question

Question: The value of $\int_{0}^{[x]} \frac{2^x}{2^{[x]}}dx$ is...

The value of 0[x]2x2[x]dx\int_{0}^{[x]} \frac{2^x}{2^{[x]}}dx is

A

[x]log2[x] \log 2

B

[x]log2\frac{[x]}{\log 2}

C

12[x]log2\frac{1}{2} \cdot \frac{[x]}{\log 2}

D

None of these

Answer

[x]log2\frac{[x]}{\log 2}

Explanation

Solution

Let the given integral be II. The upper limit of the integral is [x][x]. Let n=[x]n = [x]. Since the lower limit is 0, we consider the case where nn is a non-negative integer. If x0x \ge 0, then [x]0[x] \ge 0. The integral is I=0n2x2[x]dxI = \int_{0}^{n} \frac{2^x}{2^{[x]}}dx.

We can split the integral into a sum of integrals over the intervals [k,k+1)[k, k+1) for k=0,1,,n1k = 0, 1, \dots, n-1. In each interval [k,k+1)[k, k+1), the value of [x][x] is kk. So, we can write the integral as: I=k=0n1kk+12x2[x]dxI = \sum_{k=0}^{n-1} \int_{k}^{k+1} \frac{2^x}{2^{[x]}}dx

For x[k,k+1)x \in [k, k+1), [x]=k[x] = k. Thus, the integrand becomes 2x2k\frac{2^x}{2^k}. The integral over the interval [k,k+1)[k, k+1) is: kk+12x2kdx=12kkk+12xdx\int_{k}^{k+1} \frac{2^x}{2^k}dx = \frac{1}{2^k} \int_{k}^{k+1} 2^x dx

Now, we evaluate the integral 2xdx\int 2^x dx. The formula for the integral of axa^x is axdx=axloga+C\int a^x dx = \frac{a^x}{\log a} + C. So, 2xdx=2xlog2+C\int 2^x dx = \frac{2^x}{\log 2} + C.

Now, evaluate the definite integral kk+12xdx\int_{k}^{k+1} 2^x dx: kk+12xdx=[2xlog2]kk+1=2k+1log22klog2=2k+12klog2\int_{k}^{k+1} 2^x dx = \left[\frac{2^x}{\log 2}\right]_{k}^{k+1} = \frac{2^{k+1}}{\log 2} - \frac{2^k}{\log 2} = \frac{2^{k+1} - 2^k}{\log 2} =22k2klog2=2k(21)log2=2klog2= \frac{2 \cdot 2^k - 2^k}{\log 2} = \frac{2^k(2-1)}{\log 2} = \frac{2^k}{\log 2}

Substitute this result back into the integral over the interval [k,k+1)[k, k+1): kk+12x2kdx=12k2klog2=1log2\int_{k}^{k+1} \frac{2^x}{2^k}dx = \frac{1}{2^k} \cdot \frac{2^k}{\log 2} = \frac{1}{\log 2}

The total integral is the sum of these integrals over the intervals from k=0k=0 to n1n-1. There are nn such intervals. I=k=0n11log2I = \sum_{k=0}^{n-1} \frac{1}{\log 2}

This is a sum of nn terms, each equal to 1log2\frac{1}{\log 2}. I=n1log2=nlog2I = n \cdot \frac{1}{\log 2} = \frac{n}{\log 2}

Since n=[x]n = [x], the value of the integral is [x]log2\frac{[x]}{\log 2}.