Solveeit Logo

Question

Question: The value of \(\int_{0}^{\pi/2\int(x - \pi/3)\cos e(x - \pi/.6)}\cos\) is...

The value of 0π/2(xπ/3)cose(xπ/.6)cos\int_{0}^{\pi/2\int(x - \pi/3)\cos e(x - \pi/.6)}\cos is

A

2log3

B

-2log 3

C

log3

D

None of these

Answer

2log3

Explanation

Solution

0π/2(xπ/3)cose(xπ/6)cos\int_{0}^{\pi/2\int(x - \pi/3)\cos e(x - \pi/6)}\cos

= 20π/2sin[(xπ6)(xπ3)]sin(xπ6).sin(xπ3)dx2\int_{0}^{\pi/2}{\frac{\sin\left\lbrack \left( x - \frac{\pi}{6} \right) - \left( x - \frac{\pi}{3} \right) \right\rbrack}{\sin\left( x - \frac{\pi}{6} \right).\sin\left( x - \frac{\pi}{3} \right)}dx}

20π/2[cot(xπ3)cot(xπ6)]dx2\int_{0}^{\pi/2}{\left\lbrack \cot\left( x - \frac{\pi}{3} \right) - \cot\left( x - \frac{\pi}{6} \right) \right\rbrack dx}

2[logsin(xπ3)logsin(xπ6)]0π/22\left\lbrack \log{\sin\left( x - \frac{\pi}{3} \right)} - \log{\sin\left( x - \frac{\pi}{6} \right)} \right\rbrack_{0}^{\pi/2}

2[log(sin(xπ3)sin(xπ6))]0π/2=2[log(1232)log(3212)]2\left\lbrack \log\left( \frac{\sin\left( x - \frac{\pi}{3} \right)}{\sin\left( x - \frac{\pi}{6} \right)} \right) \right\rbrack_{0}^{\pi/2} = 2\left\lbrack \log\left( \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) - \log\left( \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \right) \right\rbrack2[log3log3]2\left\lbrack - \log\sqrt{3} - \log\sqrt{3} \right\rbrack

4log3=2log3.- 4\log\sqrt{3} = - 2\log 3.