Question
Question: The value of \(\int_{0}^{\pi/2\int(x - \pi/3)\cos e(x - \pi/.6)}\cos\) is...
The value of ∫0π/2∫(x−π/3)cose(x−π/.6)cos is
A
2log3
B
-2log 3
C
log3
D
None of these
Answer
2log3
Explanation
Solution
∫0π/2∫(x−π/3)cose(x−π/6)cos
= 2∫0π/2sin(x−6π).sin(x−3π)sin[(x−6π)−(x−3π)]dx
⇒2∫0π/2[cot(x−3π)−cot(x−6π)]dx
⇒ 2[logsin(x−3π)−logsin(x−6π)]0π/2
⇒ 2[log(sin(x−6π)sin(x−3π))]0π/2=2[log(2321)−log(2123)]⇒ 2[−log3−log3]
⇒ −4log3=−2log3.