Solveeit Logo

Question

Question: The value of $\int_{0}^{1}\frac{ln(x+x^{-1})}{x+x^{-1}}dx$ equals (It is given that $\sum_{n=1}^{\in...

The value of 01ln(x+x1)x+x1dx\int_{0}^{1}\frac{ln(x+x^{-1})}{x+x^{-1}}dx equals (It is given that n=1(1)n+1n2=π212\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}=\frac{\pi^2}{12})

Answer

(ln2)24π248\frac{(\ln 2)^2}{4}-\frac{\pi^2}{48}

Explanation

Solution

The given integral is I=01ln(x+x1)x+x1dxI = \int_{0}^{1}\frac{\ln(x+x^{-1})}{x+x^{-1}}dx.

First, simplify the term x+x1=x+1x=x2+1xx+x^{-1} = x+\frac{1}{x} = \frac{x^2+1}{x}. So the integral becomes I=01ln(x2+1x)x2+1xdxI = \int_{0}^{1}\frac{\ln\left(\frac{x^2+1}{x}\right)}{\frac{x^2+1}{x}}dx.

Let's use the substitution x=tanθx = \tan\theta. When x=0x=0, θ=0\theta=0. When x=1x=1, θ=π4\theta=\frac{\pi}{4}. dx=sec2θdθdx = \sec^2\theta d\theta. The term x+x1x+x^{-1} becomes tanθ+1tanθ=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=1sinθcosθ=22sinθcosθ=2sin(2θ)\tan\theta + \frac{1}{\tan\theta} = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta} = \frac{1}{\sin\theta\cos\theta} = \frac{2}{2\sin\theta\cos\theta} = \frac{2}{\sin(2\theta)}.

Substitute these into the integral: I=0π/4ln(2sin(2θ))2sin(2θ)sec2θdθI = \int_{0}^{\pi/4} \frac{\ln\left(\frac{2}{\sin(2\theta)}\right)}{\frac{2}{\sin(2\theta)}} \sec^2\theta d\theta I=0π/4sin(2θ)2ln(2sin(2θ))sec2θdθI = \int_{0}^{\pi/4} \frac{\sin(2\theta)}{2} \ln\left(\frac{2}{\sin(2\theta)}\right) \sec^2\theta d\theta Using sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta and sec2θ=1cos2θ\sec^2\theta = \frac{1}{\cos^2\theta}: I=0π/42sinθcosθ2(ln2ln(sin(2θ)))1cos2θdθI = \int_{0}^{\pi/4} \frac{2\sin\theta\cos\theta}{2} \left(\ln 2 - \ln(\sin(2\theta))\right) \frac{1}{\cos^2\theta} d\theta I=0π/4sinθcosθ(ln2ln(sin(2θ)))dθI = \int_{0}^{\pi/4} \frac{\sin\theta}{\cos\theta} \left(\ln 2 - \ln(\sin(2\theta))\right) d\theta I=0π/4tanθ(ln2ln(sin(2θ)))dθI = \int_{0}^{\pi/4} \tan\theta (\ln 2 - \ln(\sin(2\theta))) d\theta Split the integral into two parts: I=ln20π/4tanθdθ0π/4tanθln(sin(2θ))dθI = \ln 2 \int_{0}^{\pi/4} \tan\theta d\theta - \int_{0}^{\pi/4} \tan\theta \ln(\sin(2\theta)) d\theta

Evaluate the first integral: 0π/4tanθdθ=[lnsecθ]0π/4=ln(sec(π/4))ln(sec(0))=ln(2)ln(1)=12ln20=12ln2\int_{0}^{\pi/4} \tan\theta d\theta = [\ln|\sec\theta|]_{0}^{\pi/4} = \ln(\sec(\pi/4)) - \ln(\sec(0)) = \ln(\sqrt{2}) - \ln(1) = \frac{1}{2}\ln 2 - 0 = \frac{1}{2}\ln 2 So the first term is ln212ln2=12(ln2)2\ln 2 \cdot \frac{1}{2}\ln 2 = \frac{1}{2}(\ln 2)^2.

Now, let J=0π/4tanθln(sin(2θ))dθJ = \int_{0}^{\pi/4} \tan\theta \ln(\sin(2\theta)) d\theta. Apply integration by parts: udv=uvvdu\int u dv = uv - \int v du. Let u=ln(sin(2θ))u = \ln(\sin(2\theta)) and dv=tanθdθdv = \tan\theta d\theta. Then du=1sin(2θ)2cos(2θ)dθ=2cot(2θ)dθdu = \frac{1}{\sin(2\theta)} \cdot 2\cos(2\theta) d\theta = 2\cot(2\theta) d\theta. And v=tanθdθ=lnsecθv = \int \tan\theta d\theta = \ln|\sec\theta|.

J=[lnsecθln(sin(2θ))]0π/40π/4lnsecθ2cot(2θ)dθJ = [\ln|\sec\theta|\ln(\sin(2\theta))]_{0}^{\pi/4} - \int_{0}^{\pi/4} \ln|\sec\theta| \cdot 2\cot(2\theta) d\theta Evaluate the boundary term: At θ=π4\theta=\frac{\pi}{4}: ln(sec(π/4))ln(sin(π/2))=ln(2)ln(1)=12ln20=0\ln(\sec(\pi/4))\ln(\sin(\pi/2)) = \ln(\sqrt{2})\ln(1) = \frac{1}{2}\ln 2 \cdot 0 = 0. At θ=0\theta=0: limθ0+ln(secθ)ln(sin(2θ))\lim_{\theta \to 0^+} \ln(\sec\theta)\ln(\sin(2\theta)). This is a 0×()0 \times (-\infty) form. Using L'Hopital's rule or series expansion: ln(secθ)=ln(cosθ)(θ221)θ22\ln(\sec\theta) = -\ln(\cos\theta) \approx -(\frac{\theta^2}{2}-1) \approx \frac{\theta^2}{2} for small θ\theta. ln(sin(2θ))ln(2θ)\ln(\sin(2\theta)) \approx \ln(2\theta) for small θ\theta. So the limit is limθ0+θ22ln(2θ)\lim_{\theta \to 0^+} \frac{\theta^2}{2} \ln(2\theta). Let y=2θy=2\theta. limy0+y28lny=0\lim_{y \to 0^+} \frac{y^2}{8}\ln y = 0. Thus, the boundary term is 00.

So, J=0π/4lnsecθ2cot(2θ)dθ=0π/4ln(cosθ)2cot(2θ)dθJ = - \int_{0}^{\pi/4} \ln|\sec\theta| \cdot 2\cot(2\theta) d\theta = \int_{0}^{\pi/4} \ln(\cos\theta) \cdot 2\cot(2\theta) d\theta. We have 2cot(2θ)=2cos(2θ)sin(2θ)=2(2cos2θ1)2sinθcosθ=2cos2θ1sinθcosθ=2cosθsinθ1sinθcosθ=2cotθ2csc(2θ)2\cot(2\theta) = \frac{2\cos(2\theta)}{\sin(2\theta)} = \frac{2(2\cos^2\theta-1)}{2\sin\theta\cos\theta} = \frac{2\cos^2\theta-1}{\sin\theta\cos\theta} = \frac{2\cos\theta}{\sin\theta} - \frac{1}{\sin\theta\cos\theta} = 2\cot\theta - 2\csc(2\theta). So, J=0π/4ln(cosθ)(2cotθ2csc(2θ))dθJ = \int_{0}^{\pi/4} \ln(\cos\theta) (2\cot\theta - 2\csc(2\theta)) d\theta. This approach seems to lead to more complex integrals.

Let's use a different substitution in the original integral. I=01ln(x+x1)x+x1dxI = \int_{0}^{1}\frac{\ln(x+x^{-1})}{x+x^{-1}}dx. Let u=x+1xu = x+\frac{1}{x}. Then du=(11x2)dx=x21x2dxdu = (1-\frac{1}{x^2})dx = \frac{x^2-1}{x^2}dx. This doesn't seem to simplify the integral directly.

Consider the property of definite integrals: abf(x)dx=abf(a+bx)dx\int_a^b f(x) dx = \int_a^b f(a+b-x) dx. Here a=0,b=1a=0, b=1. So x1xx \to 1-x. I=01ln((1x)+(1x)1)(1x)+(1x)1dxI = \int_{0}^{1}\frac{\ln((1-x)+(1-x)^{-1})}{(1-x)+(1-x)^{-1}}dx. This makes it more complicated.

Let's try a substitution x=etx=e^{-t}. When x=0x=0, tt \to \infty. When x=1x=1, t=0t=0. dx=etdtdx = -e^{-t} dt. x+x1=et+et=2coshtx+x^{-1} = e^{-t}+e^t = 2\cosh t. I=0ln(2cosht)2cosht(et)dtI = \int_{\infty}^{0} \frac{\ln(2\cosh t)}{2\cosh t} (-e^{-t}) dt I=0ln(2cosht)2coshtetdtI = \int_{0}^{\infty} \frac{\ln(2\cosh t)}{2\cosh t} e^{-t} dt Expand 2cosht=et+et2\cosh t = e^t+e^{-t}: I=0ln(et+et)et+etetdtI = \int_{0}^{\infty} \frac{\ln(e^t+e^{-t})}{e^t+e^{-t}} e^{-t} dt I=0ln(et(1+e2t))et(1+e2t)etdtI = \int_{0}^{\infty} \frac{\ln(e^t(1+e^{-2t}))}{e^t(1+e^{-2t})} e^{-t} dt I=0t+ln(1+e2t)et+etetdtI = \int_{0}^{\infty} \frac{t+\ln(1+e^{-2t})}{e^t+e^{-t}} e^{-t} dt I=0tetet+etdt+0ln(1+e2t)etet+etdtI = \int_{0}^{\infty} \frac{t e^{-t}}{e^t+e^{-t}} dt + \int_{0}^{\infty} \frac{\ln(1+e^{-2t})e^{-t}}{e^t+e^{-t}} dt Multiply numerator and denominator by ete^{-t}: I=0te2t1+e2tdt+0ln(1+e2t)e2t1+e2tdtI = \int_{0}^{\infty} \frac{t e^{-2t}}{1+e^{-2t}} dt + \int_{0}^{\infty} \frac{\ln(1+e^{-2t})e^{-2t}}{1+e^{-2t}} dt Let u=e2tu = e^{-2t}. Then du=2e2tdtdu = -2e^{-2t} dt. So e2tdt=12due^{-2t} dt = -\frac{1}{2}du. Also, t=12lnut = -\frac{1}{2}\ln u. When t=0t=0, u=e0=1u=e^0=1. When t=t=\infty, u=e=0u=e^{-\infty}=0.

Substitute these into the first integral: I1=1012lnu1+u(12du)=1401lnu1+uduI_1 = \int_{1}^{0} \frac{-\frac{1}{2}\ln u}{1+u} \left(-\frac{1}{2}du\right) = \frac{1}{4} \int_{0}^{1} \frac{\ln u}{1+u} du This is a standard integral. We know that 11+u=n=0(1)nun\frac{1}{1+u} = \sum_{n=0}^{\infty} (-1)^n u^n for u<1|u|<1. So, 01lnu1+udu=01lnun=0(1)nundu=n=0(1)n01unlnudu\int_{0}^{1} \frac{\ln u}{1+u} du = \int_{0}^{1} \ln u \sum_{n=0}^{\infty} (-1)^n u^n du = \sum_{n=0}^{\infty} (-1)^n \int_{0}^{1} u^n \ln u du. The integral 01unlnudu\int_{0}^{1} u^n \ln u du can be evaluated by integration by parts: unlnudu=un+1n+1lnuun+1n+11udu=un+1n+1lnuun+1(n+1)2\int u^n \ln u du = \frac{u^{n+1}}{n+1}\ln u - \int \frac{u^{n+1}}{n+1}\frac{1}{u} du = \frac{u^{n+1}}{n+1}\ln u - \frac{u^{n+1}}{(n+1)^2}. Evaluating from 00 to 11: [un+1n+1lnuun+1(n+1)2]01=(01(n+1)2)(00)=1(n+1)2[\frac{u^{n+1}}{n+1}\ln u - \frac{u^{n+1}}{(n+1)^2}]_{0}^{1} = (0 - \frac{1}{(n+1)^2}) - (0 - 0) = -\frac{1}{(n+1)^2}. (The limit limu0+un+1lnu=0\lim_{u\to 0^+} u^{n+1}\ln u = 0 for n+1>0n+1>0.) So, 01lnu1+udu=n=0(1)n(1(n+1)2)=n=0(1)n(n+1)2\int_{0}^{1} \frac{\ln u}{1+u} du = \sum_{n=0}^{\infty} (-1)^n \left(-\frac{1}{(n+1)^2}\right) = -\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^2}. Let k=n+1k=n+1. Then n=k1n=k-1. When n=0,k=1n=0, k=1. When n=,k=n=\infty, k=\infty. So, k=1(1)k1k2=k=1(1)kk2=k=1(1)kk2-\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^2} = -\sum_{k=1}^{\infty} \frac{-(-1)^k}{k^2} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}. This is related to the given sum n=1(1)n+1n2=π212\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}=\frac{\pi^2}{12}. Note that k=1(1)k+1k2=π212\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} = \frac{\pi^2}{12}. Our sum is k=1(1)kk2=k=1(1)k+1k2=π212\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} = - \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} = -\frac{\pi^2}{12}. Therefore, I1=14(π212)=π248I_1 = \frac{1}{4} \left(-\frac{\pi^2}{12}\right) = -\frac{\pi^2}{48}.

Now, substitute u=e2tu=e^{-2t} into the second integral: I2=10ln(1+u)1+u(12du)=1201ln(1+u)1+uduI_2 = \int_{1}^{0} \frac{\ln(1+u)}{1+u} \left(-\frac{1}{2}du\right) = \frac{1}{2} \int_{0}^{1} \frac{\ln(1+u)}{1+u} du This integral is of the form lnyydy=(lny)22\int \frac{\ln y}{y} dy = \frac{(\ln y)^2}{2}. Let y=1+uy = 1+u. Then dy=dudy = du. When u=0,y=1u=0, y=1. When u=1,y=2u=1, y=2. I2=1212lnyydy=12[(lny)22]12I_2 = \frac{1}{2} \int_{1}^{2} \frac{\ln y}{y} dy = \frac{1}{2} \left[\frac{(\ln y)^2}{2}\right]_{1}^{2} I2=14[(ln2)2(ln1)2]=14[(ln2)20]=(ln2)24I_2 = \frac{1}{4} [(\ln 2)^2 - (\ln 1)^2] = \frac{1}{4} [(\ln 2)^2 - 0] = \frac{(\ln 2)^2}{4}

Finally, I=I1+I2=π248+(ln2)24I = I_1 + I_2 = -\frac{\pi^2}{48} + \frac{(\ln 2)^2}{4}.