Solveeit Logo

Question

Question: The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{(\pi-4\theta) \tan \theta}{1-\tan \theta} ...

The value of π4π4(π4θ)tanθ1tanθdθ\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{(\pi-4\theta) \tan \theta}{1-\tan \theta} d\theta is equal to:

A

π2ln2π24\frac{\pi}{2} \ln 2 - \frac{\pi^2}{4}

B

π2ln2+π24\frac{\pi}{2} \ln 2 + \frac{\pi^2}{4}

C

πln2π24\pi \ln 2 - \frac{\pi^2}{4}

D

πln2π24-\pi \ln 2 - \frac{\pi^2}{4}

Answer

πln2π24\pi\ln2-\frac{\pi^2}{4}

Explanation

Solution

We start with

I=π4π4(π4θ)tanθ1tanθdθ.I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{(\pi-4\theta)\tan\theta}{1-\tan\theta}\,d\theta.

A very clever change of variable is to use

u=π4θ.u=\frac{\pi}{4}-\theta.

Then when θ=π4\theta=-\frac{\pi}{4} we have

u=π4(π4)=π2,u=\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)=\frac{\pi}{2},

and when θ=π4\theta=\frac{\pi}{4} we get u=0u=0. Also, dθ=dud\theta=-du.

Now, express the integrand in terms of uu. Note that

π4θ=π4(π4u)=π(π4u)=4u.\pi-4\theta=\pi-4\Bigl(\frac{\pi}{4}-u\Bigr)=\pi-(\pi-4u)=4u.

Next, using the identity

tan(π4u)=1tanu1+tanu,\tan\left(\frac{\pi}{4}-u\right)=\frac{1-\tan u}{1+\tan u},

we have

1tan(π4u)=11tanu1+tanu=(1+tanu)(1tanu)1+tanu=2tanu1+tanu.1-\tan\left(\frac{\pi}{4}-u\right)=1-\frac{1-\tan u}{1+\tan u}=\frac{(1+\tan u)-(1-\tan u)}{1+\tan u}=\frac{2\tan u}{1+\tan u}.

Thus the integrand becomes

(π4θ)tanθ1tanθ4u  tan(π4u)1tan(π4u)=4u1tanu1+tanu2tanu1+tanu=4u(1tanu)2tanu=2u(1tanu)tanu.\frac{(\pi-4\theta)\tan\theta}{1-\tan\theta}\quad \rightarrow\quad \frac{4u\;\tan\left(\frac{\pi}{4}-u\right)}{1-\tan\left(\frac{\pi}{4}-u\right)} =\frac{4u\,\dfrac{1-\tan u}{1+\tan u}}{\dfrac{2\tan u}{1+\tan u}} =\frac{4u\,(1-\tan u)}{2\tan u} =\frac{2u\,(1-\tan u)}{\tan u}.

Changing the limits (and noting that the minus sign from dθ=dud\theta=-du reverses the limits) we write

I=u=π/202u(1tanu)tanu(du)=0π/22u(1tanu)tanudu.I=\int_{u=\pi/2}^{0}\frac{2u\,(1-\tan u)}{\tan u}(-du) =\int_{0}^{\pi/2}\frac{2u\,(1-\tan u)}{\tan u}\,du.

It is convenient to rewrite this expression as

I=20π/2u(1tanu1)du=20π/2u(cotu1)du.I=2\int_{0}^{\pi/2}u\Bigl(\frac{1}{\tan u}-1\Bigr)du =2\int_{0}^{\pi/2}u\Bigl(\cot u-1\Bigr)du.

We now separate the integral:

I=2[0π/2ucotuduL0π/2uduM].I=2\Biggl[\underbrace{\int_{0}^{\pi/2}u\,\cot u\,du}_{L}-\underbrace{\int_{0}^{\pi/2}u\,du}_{M}\Biggr].

Step 1. Evaluation of MM:

M=0π/2udu=u220π/2=π28.M=\int_{0}^{\pi/2}u\,du=\left.\frac{u^2}{2}\right|_0^{\pi/2}=\frac{\pi^2}{8}.

Step 2. Evaluation of LL:

Use integration by parts. Let

v=u,dw=cotududv=du,w=cotudu=lnsinu.v=u,\quad dw=\cot u\,du\quad \Longrightarrow\quad dv=du,\quad w=\int \cot u\,du=\ln|\sin u|.

Then

L=ulnsinu0π/20π/2lnsinudu.L=u\ln|\sin u|\Big|_0^{\pi/2}-\int_{0}^{\pi/2}\ln|\sin u|\,du.

At u=π/2u=\pi/2, ln(sin(π/2))=ln1=0\ln(\sin(\pi/2))=\ln1=0; at u=0u=0 the term ulnsinuu\ln|\sin u| tends to 0 (since ulnu0u\ln u\to0 as u0u\to0). Hence,

L=0π/2ln(sinu)du.L=-\int_{0}^{\pi/2}\ln(\sin u)\,du.

A standard result is:

0π/2ln(sinu)du=π2ln2.\int_{0}^{\pi/2}\ln(\sin u)\,du=-\frac{\pi}{2}\ln2.

Thus,

L=(π2ln2)=π2ln2.L=-\Bigl(-\frac{\pi}{2}\ln2\Bigr)=\frac{\pi}{2}\ln2.

Step 3. Final answer:

Plug LL and MM back into the expression for II:

I=2[π2ln2π28]=πln2π24.I=2\left[\frac{\pi}{2}\ln2-\frac{\pi^2}{8}\right] =\pi\ln2-\frac{\pi^2}{4}.

Summary:

  • Explanation: Substitute u=π4θu=\tfrac{\pi}{4}-\theta, simplify using tan(π4u)=1tanu1+tanu\tan(\frac{\pi}{4}-u)=\frac{1-\tan u}{1+\tan u} to recast the integral as 20π/2u(cotu1)du2\int_0^{\pi/2} u(\cot u-1)du. Separate the integral and use integration by parts with the standard formula 0π/2ln(sinu)du=π2ln2\int_0^{\pi/2}\ln(\sin u)du=-\frac{\pi}{2}\ln2.
  • Answer: πln2π24\pi\ln2-\frac{\pi^2}{4} (Option 3)