Solveeit Logo

Question

Question: The value of $ \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{[x]+7} $, (where [.] denotes the grea...

The value of π4π2dx[x]+7\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{[x]+7}, (where [.] denotes the greatest integer function) is equal to

A

5π48146\frac{5\pi}{48} - \frac{1}{46}

B

π16+156\frac{\pi}{16} + \frac{1}{56}

C

5π48+156\frac{5\pi}{48} + \frac{1}{56}

D

7π48+156\frac{7\pi}{48} + \frac{1}{56}

Answer

5π48+156\frac{5\pi}{48} + \frac{1}{56}

Explanation

Solution

The integral is π4π2dx[x]+7\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{[x]+7}. The limits are approximately 0.785-0.785 to 1.571.57. The greatest integer function [x][x] changes its value at integer points. In the interval [π4,π2][-\frac{\pi}{4}, \frac{\pi}{2}], the integer points are 00 and 11.

We split the integral into three parts:

  1. For x[π4,0)x \in [-\frac{\pi}{4}, 0), [x]=1[x] = -1.
  2. For x[0,1)x \in [0, 1), [x]=0[x] = 0.
  3. For x[1,π2]x \in [1, \frac{\pi}{2}], [x]=1[x] = 1.

The integral becomes: π40dx1+7+01dx0+7+1π2dx1+7\int_{-\frac{\pi}{4}}^{0} \frac{dx}{-1+7} + \int_{0}^{1} \frac{dx}{0+7} + \int_{1}^{\frac{\pi}{2}} \frac{dx}{1+7} =π40dx6+01dx7+1π2dx8= \int_{-\frac{\pi}{4}}^{0} \frac{dx}{6} + \int_{0}^{1} \frac{dx}{7} + \int_{1}^{\frac{\pi}{2}} \frac{dx}{8}

Evaluating each integral: 16[x]π40=16(0(π4))=π24\frac{1}{6} [x]_{-\frac{\pi}{4}}^{0} = \frac{1}{6} (0 - (-\frac{\pi}{4})) = \frac{\pi}{24} 17[x]01=17(10)=17\frac{1}{7} [x]_{0}^{1} = \frac{1}{7} (1 - 0) = \frac{1}{7} 18[x]1π2=18(π21)=π1618\frac{1}{8} [x]_{1}^{\frac{\pi}{2}} = \frac{1}{8} (\frac{\pi}{2} - 1) = \frac{\pi}{16} - \frac{1}{8}

Summing these values: π24+17+π1618\frac{\pi}{24} + \frac{1}{7} + \frac{\pi}{16} - \frac{1}{8} Combine terms with π\pi: π24+π16=π(248+348)=5π48\frac{\pi}{24} + \frac{\pi}{16} = \pi (\frac{2}{48} + \frac{3}{48}) = \frac{5\pi}{48} Combine constant terms: 1718=856756=156\frac{1}{7} - \frac{1}{8} = \frac{8}{56} - \frac{7}{56} = \frac{1}{56}

The total value of the integral is 5π48+156\frac{5\pi}{48} + \frac{1}{56}.