Question
Question: The value of $ \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{[x]+7} $, (where [.] denotes the grea...
The value of ∫−4π2π[x]+7dx, (where [.] denotes the greatest integer function) is equal to

485π−461
16π+561
485π+561
487π+561
485π+561
Solution
The integral is ∫−4π2π[x]+7dx. The limits are approximately −0.785 to 1.57. The greatest integer function [x] changes its value at integer points. In the interval [−4π,2π], the integer points are 0 and 1.
We split the integral into three parts:
- For x∈[−4π,0), [x]=−1.
- For x∈[0,1), [x]=0.
- For x∈[1,2π], [x]=1.
The integral becomes: ∫−4π0−1+7dx+∫010+7dx+∫12π1+7dx =∫−4π06dx+∫017dx+∫12π8dx
Evaluating each integral: 61[x]−4π0=61(0−(−4π))=24π 71[x]01=71(1−0)=71 81[x]12π=81(2π−1)=16π−81
Summing these values: 24π+71+16π−81 Combine terms with π: 24π+16π=π(482+483)=485π Combine constant terms: 71−81=568−567=561
The total value of the integral is 485π+561.
