Solveeit Logo

Question

Question: The value of \(\int_{- 2n}^{2n + \frac{1}{2}}{}\) (sin p x) \(\left\{ \frac{x}{2} \right\}\)dx is (w...

The value of 2n2n+12\int_{- 2n}^{2n + \frac{1}{2}}{} (sin p x) {x2}\left\{ \frac{x}{2} \right\}dx is (where {x} denotes the fractional part of x)

A

2nπ+1π2\frac{- 2n\pi + 1}{\pi^{2}}

B

nπ\frac{n}{\pi}

C

(n+1)π\frac{(n + 1)}{\pi}

D

2nπ1π2\frac{2n\pi - 1}{\pi^{2}}

Answer

2nπ+1π2\frac{- 2n\pi + 1}{\pi^{2}}

Explanation

Solution

I = 2n2n+12\int_{2n}^{2n + \frac{1}{2}}{} (sin x) {x2}\left\{ \frac{x}{2} \right\}dx

= 2n02\int_{0}^{2}{} (sin px)x2\frac{x}{2}dx +01/2\int_{0}^{1/2}{} (sin px)x2\frac{x}{2}dx

=2nπ+1π2\frac{- 2n\pi + 1}{\pi^{2}}