Solveeit Logo

Question

Question: The value of \[\int {{x^3}{e^x}} dx = \] A. \[{e^x}\left( {{x^3} - 3{x^2} + 6x + 6} \right) + c\] ...

The value of x3exdx=\int {{x^3}{e^x}} dx =
A. ex(x33x2+6x+6)+c{e^x}\left( {{x^3} - 3{x^2} + 6x + 6} \right) + c
B. ex(x33x2+6x6)+c{e^x}\left( {{x^3} - 3{x^2} + 6x - 6} \right) + c
C. ex(x3+3x2+6x+6)+c{e^x}\left( {{x^3} + 3{x^2} + 6x + 6} \right) + c
D. ex(x33x26x+6)+c{e^x}\left( {{x^3} - 3{x^2} - 6x + 6} \right) + c

Explanation

Solution

We see that given function is a product of two functions and so To find the value of x3exdx\int {{x^3}{e^x}} dx, we will use By Parts formula. According to the By Parts formula, f(x).g(x)dx=f(x).(g(x)dx)(f(x).(g(x)dx))dx\int {f(x).g(x)} dx = f(x).\left( {\int {g(x)} dx} \right) - \int {\left( {f'(x).\left( {\int {g(x)} dx} \right)} \right)dx} . Here, f(x)=ddxf(x)f'(x) = \dfrac{d}{{dx}}f(x) and f(x)f(x) is the first function and g(x)g(x) is the second function. First function and second function are decided according to the ILATEILATE rule. We need to identify the function that comes first on the following list and select it as f(x)f(x). We need to identify the function that comes first on the following list and select it as f(x)f(x). ILATEILATE stands for
II - Inverse Trigonometric Function
LL - Logarithmic Function
AA - Algebraic Function
TT - Trigonometric Function
EE - Exponential Function

Complete step by step answer:
We need to calculate x3exdx\int {{x^3}{e^x}} dx using By Parts formula and ILATEILATE rule, we see x3{x^3} is an algebraic function and ex{e^x} is an exponential function. Now, according to ILATEILATE rule, x3{x^3}is our first function and ex{e^x} is our second function. Hence, we have
f(x)=x3(1)f(x) = {x^3} - - - - - - (1)
g(x)=ex(2)\Rightarrow g(x) = {e^x} - - - - - - (2)
Using (1) and (2) in the By Parts Formula i.e. f(x).g(x)dx=f(x).(g(x)dx)(f(x).(g(x)dx))dx\int {f(x).g(x)} dx = f(x).\left( {\int {g(x)} dx} \right) - \int {\left( {f'(x).\left( {\int {g(x)} dx} \right)} \right)dx} , we have
x3.exdx=x3.(exdx)(ddx(x3).(exdx))dx\Rightarrow \int {{x^3}.{e^x}} dx = {x^3}.\left( {\int {{e^x}} dx} \right) - \int {\left( {\dfrac{d}{{dx}}\left( {{x^3}} \right).\left( {\int {{e^x}} dx} \right)} \right)dx}

We know, exdx=ex+c\int {{e^x}dx = {e^x} + c} and ddxxn=n(x)n1\dfrac{d}{{dx}}{x^n} = n{\left( x \right)^{n - 1}}. Hence, using this
x3.exdx=x3.(ex)((3x31).(ex))dx\Rightarrow \int {{x^3}.{e^x}} dx = {x^3}.\left( {{e^x}} \right) - \int {\left( {\left( {3{x^{3 - 1}}} \right).\left( {{e^x}} \right)} \right)dx}
x3.exdx=x3.(ex)(3x2).(ex)dx\Rightarrow \int {{x^3}.{e^x}} dx = {x^3}.\left( {{e^x}} \right) - \int {\left( {3{x^2}} \right).\left( {{e^x}} \right)dx}
We know, c.f(x)dx=cf(x)dx\int {c.f(x)} dx = c\int {f(x)} dx, where cc is a constant term.
So, using this in above equation, we get
x3.exdx=x3.(ex)3x2exdx(3)\Rightarrow \int {{x^3}.{e^x}} dx = {x^3}.\left( {{e^x}} \right) - 3\int {{x^2}{e^x}} dx - - - - - - (3)
Now, we see that x2exdx\int {{x^2}{e^x}} dxis again a product of two functions and so to solve this, we need to apply the By Parts Formula again.
Now, Solving x2exdx\int {{x^2}{e^x}} dx
We see x2{x^2} is an algebraic function and ex{e^x} is an exponential function. Hence, we take
x2=f(x){x^2} = f(x)
ex=g(x)\Rightarrow {e^x} = g(x)

Putting these values in f(x).g(x)dx=f(x).(g(x)dx)(f(x).(g(x)dx))dx\int {f(x).g(x)} dx = f(x).\left( {\int {g(x)} dx} \right) - \int {\left( {f'(x).\left( {\int {g(x)} dx} \right)} \right)dx} , we get
x2.exdx=x2.(exdx)(ddx(x2).(exdx))dx\int {{x^2}.{e^x}} dx = {x^2}.\left( {\int {{e^x}} dx} \right) - \int {\left( {\dfrac{d}{{dx}}\left( {{x^2}} \right).\left( {\int {{e^x}} dx} \right)} \right)dx}
Using formulas exdx=ex+c\int {{e^x}dx = {e^x} + c} and ddxxn=n(x)n1\dfrac{d}{{dx}}{x^n} = n{\left( x \right)^{n - 1}}, we get
x2.exdx=x2.(ex)((2x21).(ex))dx\Rightarrow \int {{x^2}.{e^x}} dx = {x^2}.\left( {{e^x}} \right) - \int {\left( {\left( {2{x^{2 - 1}}} \right).\left( {{e^x}} \right)} \right)dx}
x2.exdx=x2.(ex)((2x).(ex))dx\Rightarrow \int {{x^2}.{e^x}} dx = {x^2}.\left( {{e^x}} \right) - \int {\left( {\left( {2x} \right).\left( {{e^x}} \right)} \right)dx}

Now, using c.f(x)dx=cf(x)dx\int {c.f(x)} dx = c\int {f(x)} dx, we have
x2.exdx=x2.(ex)2xexdx(4)\Rightarrow \int {{x^2}.{e^x}} dx = {x^2}.\left( {{e^x}} \right) - 2\int {x{e^x}dx} - - - - - - (4)
Using (4) in (3), we get
x3.exdx=x3.(ex)3(x2.(ex)2xexdx)\int {{x^3}.{e^x}} dx = {x^3}.\left( {{e^x}} \right) - 3\left( {{x^2}.\left( {{e^x}} \right) - 2\int {x{e^x}dx} } \right)
x3.exdx=x3ex3x2ex+6xexdx(5)\Rightarrow \int {{x^3}.{e^x}} dx = {x^3}{e^x} - 3{x^2}{e^x} + 6\int {x{e^x}dx} - - - - - - (5)
Again, we see that xexdx\int {x{e^x}dx} is the product of two functions and so to find xexdx\int {x{e^x}dx} , we need to use By Parts Formula again. In xexx{e^x}, we see that xx is an algebraic function and ex{e^x} is an exponential function. Hence, according to ILATEILATE rule, we take
f(x)=xf(x) = x
g(x)=ex\Rightarrow g(x) = {e^x}

Using these values in f(x).g(x)dx=f(x).(g(x)dx)(f(x).(g(x)dx))dx\int {f(x).g(x)} dx = f(x).\left( {\int {g(x)} dx} \right) - \int {\left( {f'(x).\left( {\int {g(x)} dx} \right)} \right)dx} , we get
x.exdx=x.(exdx)(ddx(x).(exdx))dx\int {x.{e^x}} dx = x.\left( {\int {{e^x}} dx} \right) - \int {\left( {\dfrac{d}{{dx}}\left( x \right).\left( {\int {{e^x}} dx} \right)} \right)dx}
Using formulas exdx=ex+c\int {{e^x}dx = {e^x} + c} and ddxxn=n(x)n1\dfrac{d}{{dx}}{x^n} = n{\left( x \right)^{n - 1}}, we get
x.exdx=x.(ex)((1x11).(ex))dx\Rightarrow \int {x.{e^x}} dx = x.\left( {{e^x}} \right) - \int {\left( {\left( {1{x^{1 - 1}}} \right).\left( {{e^x}} \right)} \right)dx}
x.exdx=x.(ex)((1x0).(ex))dx\Rightarrow \int {x.{e^x}} dx = x.\left( {{e^x}} \right) - \int {\left( {\left( {1{x^0}} \right).\left( {{e^x}} \right)} \right)dx}

We know, x0=1{x^0} = 1. So, the equation becomes
x.exdx=x.(ex)(1.ex)dx\Rightarrow \int {x.{e^x}} dx = x.\left( {{e^x}} \right) - \int {\left( {1.{e^x}} \right)dx}
x.exdx=x.(ex)exdx\Rightarrow \int {x.{e^x}} dx = x.\left( {{e^x}} \right) - \int {{e^x}dx}
Again using exdx=ex+c\int {{e^x}dx = {e^x} + c} , we get
x.exdx=x.(ex)ex+c(6)\Rightarrow \int {x.{e^x}} dx = x.\left( {{e^x}} \right) - {e^x} + c - - - - - - (6)
Using (6) in (5), we get
x3.exdx=x3ex3x2ex+6(x.(ex)ex)+c\int {{x^3}.{e^x}} dx = {x^3}{e^x} - 3{x^2}{e^x} + 6\left( {x.\left( {{e^x}} \right) - {e^x}} \right) + c, where cc is a constant term.
x3.exdx=x3ex3x2ex+6exx6ex+c\Rightarrow \int {{x^3}.{e^x}} dx = {x^3}{e^x} - 3{x^2}{e^x} + 6{e^x}x - 6{e^x} + c, where cc is a constant term.
Now taking out ex{e^x}common from first four terms, we get
x3.exdx=ex(x33x2+6x6)+c\therefore \int {{x^3}.{e^x}} dx = {e^x}\left( {{x^3} - 3{x^2} + 6x - 6} \right) + c

Therefore, the correct answer is B.

Note: In this we need to use the By Parts formula again and again. We need to be careful while selecting the first function and the second function. As wrong function selection will give us the wrong answer. Also, while using the By Parts formula, we should take care of the second term i.e. we need to first integrate the second function and then integrate the product of derivatives of the first function and integration of the second function. While combining the terms and putting the values of one term in another one, we should be very careful with the signs.