Solveeit Logo

Question

Question: The value of \[\int{\sqrt{\sec x-1}dx}\] is equal to...

The value of secx1dx\int{\sqrt{\sec x-1}dx} is equal to

Explanation

Solution

Hint:Simplify the expression secx1dx\int{\sqrt{\sec x-1}dx} using secx=1cosx\sec x=\dfrac{1}{\cos x} . We know the formula,
cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 and cos2x=12sin2x2sin2x=1cos2x\cos 2x=1-2si{{n}^{2}}x\Rightarrow 2si{{n}^{2}}x=1-\cos 2x .Then, replace x by x2\dfrac{x}{2}
in these two formulas. Use these two formulas and transform 1cosxcosxdx\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx} . Now, assume t=2cosx2t=\sqrt{2}cos\dfrac{x}{2} and transform the equation 12cos2x21×2sinx2dx\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\sin \dfrac{x}{2}dx} . We know the formula d(cosax)dx=1a(sinax)\dfrac{d\left( \cos ax \right)}{dx}=\dfrac{1}{a}\left( -\sin ax \right) and
1t21dt=[ln[t21+t]]+C\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt=\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]}+C . Use these formulas and solve it further.

Complete step-by-step answer:
According to the question, we have to integrate,
secx1dx\int{\sqrt{\sec x-1}dx} ……………….(1)
We know that cosine function is reciprocal of sec function.
secx=1cosx\sec x=\dfrac{1}{\cos x} …………………..(2)
Putting the value of secx\sec x from equation (2) in equation (1), we get
secx1dx\int{\sqrt{\sec x-1}dx}
=1cosx1dx=\int{\sqrt{\dfrac{1}{\cos x}-1}dx}
=1cosxcosxdx=\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx} ……………………(3)
We know the formula, cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 .
Replacing x by x2\dfrac{x}{2} in the above formula, we get
cos2.x2=2cos2x21\cos 2.\dfrac{x}{2}=2{{\cos }^{2}}\dfrac{x}{2}-1
cosx=2cos2x21\Rightarrow \cos x=2{{\cos }^{2}}\dfrac{x}{2}-1 ………………………(4)
We know the formula, cos2x=12sin2x\cos 2x=1-2si{{n}^{2}}x .
Replacing x by x2\dfrac{x}{2} in the above formula, we get
cos2.x2=12sin2x2\cos 2.\dfrac{x}{2}=1-2si{{n}^{2}}\dfrac{x}{2}
cosx=12sin2x2\Rightarrow \cos x=1-2si{{n}^{2}}\dfrac{x}{2}
2sin2x2=1cosx\Rightarrow 2si{{n}^{2}}\dfrac{x}{2}=1-\cos x ………………………(5)
Now, from equation (3), equation (4), and equation (5), we get
=1cosxcosxdx=\int{\sqrt{\dfrac{1-\cos x}{\cos x}}dx}
=2sin2x22cos2x21dx=\int{\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}-1}}dx}
=12cos2x21×2sinx2dx=\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\sin \dfrac{x}{2}dx} ………………..(6)
Let us assume, t=2cosx2t=\sqrt{2}cos\dfrac{x}{2} ……………………..(7)
Differentiating with respect to x in equation (7), we get
dtdx=d(2cosx2)dx\dfrac{dt}{dx}=\dfrac{d\left( \sqrt{2}cos\dfrac{x}{2} \right)}{dx}
dtdx=2d(cosx2)dx\dfrac{dt}{dx}=\sqrt{2}\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx} ……………………….(8)
We know the formula, d(cosax)dx=1a(sinax)\dfrac{d\left( \cos ax \right)}{dx}=\dfrac{1}{a}\left( -\sin ax \right) .
Replacing x by x2\dfrac{x}{2} and a by 12\dfrac{1}{2} in the above formula, we get
d(cosx2)dx=12(sinx2)\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}=\dfrac{1}{2}\left( -\sin \dfrac{x}{2} \right) ……………………(9)
Now, from equation (8) and equation (9), we get
dtdx=2d(cosx2)dx\dfrac{dt}{dx}=\sqrt{2}\dfrac{d\left( \cos \dfrac{x}{2} \right)}{dx}

& \dfrac{dt}{dx}=-\sqrt{2}\dfrac{1}{2}(-\sin \dfrac{x}{2}) \\\ & \dfrac{dt}{dx}=-\dfrac{1}{\sqrt{2}}\left( \sin \dfrac{x}{2} \right) \\\ \end{aligned}$$ $$\Rightarrow -\sqrt{2}.dt=\left( \sin \dfrac{x}{2} \right)dx$$ ………………..(10) From equation (6), equation (7), and equation (10), we get $$=\int{\sqrt{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}-1}}\times \sqrt{2}\left( \sin \dfrac{x}{2} \right)dx}$$ $$=\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}\times \sqrt{2}\left( -\sqrt{2} \right)dt}$$ $$=-2\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt}$$ ………………………….(11) We know the formula, $$\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt=\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]}+C$$ . Now, using this formula and simplifying equation (11), we get $$=-2\int{\sqrt{\dfrac{1}{{{t}^{2}}-1}}dt}$$ $$=(-2)\left[ \ln \left[ \sqrt{{{t}^{2}}-1}+t \right] \right]+C$$ ………………..(12) From equation (7), we have $$t=\sqrt{2}cos\dfrac{x}{2}$$ . Now, using equation (7) and transforming equation (12), we get $$\begin{aligned} & =\left( -2 \right)\left[ \ln \left[ \sqrt{{{\left( \sqrt{2}\cos \dfrac{x}{2} \right)}^{2}}-1}+t \right] \right]+C \\\ & =\left( -2 \right)\left[ \ln \left[ \sqrt{2{{\cos }^{2}}\dfrac{x}{2}-1}+\sqrt{2}cos\dfrac{x}{2} \right] \right]+C \\\ \end{aligned}$$ $$=\left( -2 \right)\left[ \ln \left[ \sqrt{2}\times \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right) \right] \right]+C$$ ……………………….(13) We know the formula, $$\ln (pqr)=ln(p)+ln(qr)$$ . Using this formula in equation (13), we get $$=-2\ln \sqrt{2}-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C$$ $$\begin{aligned} & ={{C}_{1}}-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C \\\ & =-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+C+{{C}_{1}} \\\ & =-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+A \\\ \end{aligned}$$ Here, A is a constant. Hence, the value of $$\int{\sqrt{\sec x-1}dx}$$ is $$-2\ln \left( \sqrt{{{\cos }^{2}}\dfrac{x}{2}-1}+cos\dfrac{x}{2} \right)+A$$ . Note: To solve this question, one might think to take $$\cos x$$ equal to t in $$\int{\sqrt{\left( \dfrac{1-\cos x}{\cos x} \right)dx}}$$ . If we do so then, we will not be able to transform it into a simpler form. $$\cos x=t$$ ………………….(1) We know the identity, $${{\sin }^{2}}x+{{\cos }^{2}}x=1$$ . Using this identity to find the value of $$\sin x$$ . $$\sin x=\sqrt{1-{{\cos }^{2}}x}=\sqrt{1-{{t}^{2}}}=\sqrt{1-t}.\sqrt{1+t}$$ ………………..(2) On differentiating equation (1), we get $$\Rightarrow \dfrac{d(\cos x)}{dx}=\dfrac{dt}{dx}$$ $$\Rightarrow dx=\dfrac{-dt}{\sin x}$$ ……………………(3) Using equation (1), equation (2), and equation (3), transforming $$\int{\sqrt{\left( \dfrac{1-\cos x}{\cos x} \right)dx}}$$ , we get $$\int{\left( \dfrac{\sqrt{1-t}}{t} \right)\left( \dfrac{-dt}{\sin x} \right)}$$ $$=\int{\left( \dfrac{\sqrt{1-t}}{t} \right)\left( \dfrac{-dt}{\sqrt{1-t}.\sqrt{1+t}} \right)}$$ The above equation is complex to be solved. Therefore, we should not approach this question by this method.