Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of ππcos2x1+axdx,a>0\int^{\pi}_{-\pi} \frac{ \cos^2 \, x }{ 1 + a^x } \, dx , a> 0 is

A

π\pi

B

aπa \, \pi

C

π2\frac{\pi}{2}

D

2π2 \pi

Answer

π2\frac{\pi}{2}

Explanation

Solution

Let I=ππcos2x1+axdx...................(1)I = \int^{\pi}_{-\pi} \frac{ \cos^2 \, x }{ 1 + a^x } \, dx ...................(1)
=ππcos2(x)1+axdx= \int^{\pi}_{-\pi} \frac{ \cos^2 \, ( -x ) }{ 1 + a^{-x} } \, dx
I=ππcos2x1+axdx................(2)I = \int^{\pi}_{-\pi} \frac{ \cos^2 \, {x } }{ 1 + a^{-x} } \, dx................(2)
On adding Eqs. (i) and (ii), we get
2I=ππ(1+ax1+ax)cos2xdx2I = \int^{\pi} _{-\pi} \bigg ( \frac{ 1 + a^x}{1 + a^x } \bigg ) \cos^2 \, x \, d \, x
=ππcos2xdx=20π1+cos2x2dx= \int^{\pi} _{-\pi} \cos^2 \, x \, d \, x = 2 \int^{\pi}_{0} \frac{ 1 + \cos \, 2x}{2} dx
=[x]0π+20π/2cos2xdx=π+0= [x]^{\pi}_{0} + 2 \int^{\pi/ 2 }_ 0 \, \cos \, 2x \, dx = \pi + 0
2I=π2I = \pi
I=π2\Rightarrow I =\frac{\pi} {2}

So. the correct answer is (C): π2\frac {\pi}{2}