Solveeit Logo

Question

Mathematics Question on limits and derivatives

The value of ππ2y(1+siny)1+cos2ydy\int_{-\pi}^{\pi} \frac{2y(1 + \sin y)}{1 + \cos^2 y} \, dy

A

π2\pi^2

B

π22\frac{\pi^2}{2}

C

π2\frac{\pi}{2}

D

2π22\pi^2

Answer

π2\pi^2

Explanation

Solution

ππ2y(1+siny)1+cos2ydy=ππ2y1+cos2ydy+ππ2ysiny1+cos2ydy\int_{-\pi}^{\pi} \frac{2y(1 + \sin y)}{1 + \cos^2 y} \, dy = \int_{-\pi}^{\pi} \frac{2y}{1 + \cos^2 y} \, dy + \int_{-\pi}^{\pi} \frac{2y \sin y}{1 + \cos^2 y} \, dy

The first integral represents an odd function, so:

ππ2y1+cos2ydy=0\int_{-\pi}^{\pi} \frac{2y}{1 + \cos^2 y} \, dy = 0

Now consider the second integral:

I=ππ2ysiny1+cos2ydy=20πysiny1+cos2ydyI = \int_{-\pi}^{\pi} \frac{2y \sin y}{1 + \cos^2 y} \, dy = 2 \int_{0}^{\pi} \frac{y \sin y}{1 + \cos^2 y} \, dy

We can rewrite this as:

I=40πysiny1+cos2ydyI = 4 \int_{0}^{\pi} \frac{y \sin y}{1 + \cos^2 y} \, dy

Using the symmetry properties and integrating by parts, we find:

I=π2I = \pi^2

Thus, the answer is Option (1): π2\pi^2