Question
Mathematics Question on limits and derivatives
The value of ∫−ππ1+cos2y2y(1+siny)dy
A
π2
B
2π2
C
2π
D
2π2
Answer
π2
Explanation
Solution
∫−ππ1+cos2y2y(1+siny)dy=∫−ππ1+cos2y2ydy+∫−ππ1+cos2y2ysinydy
The first integral represents an odd function, so:
∫−ππ1+cos2y2ydy=0
Now consider the second integral:
I=∫−ππ1+cos2y2ysinydy=2∫0π1+cos2yysinydy
We can rewrite this as:
I=4∫0π1+cos2yysinydy
Using the symmetry properties and integrating by parts, we find:
I=π2
Thus, the answer is Option (1): π2