Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of 0π/2dx1+tan3xis\int^{ \pi / 2}_0 \frac{ dx }{ 1 + \tan^3 \, x } \, is \,

A

0

B

1

C

π2\frac{ \pi }{ 2 }

D

π4\frac{ \pi }{ 4 }

Answer

π4\frac{ \pi }{ 4 }

Explanation

Solution

Let I=0π/211+tan3xdx=0π/211+sin3xcos3xdxI = \int^{ \pi / 2 }_0 \frac{ 1}{ 1 + \tan ^3 x } \, dx = \int^{ \pi/ 2}_0 \frac {1}{ 1 + \frac{ \sin^3 \, x }{ \cos ^3 \, x } } \, dx
\Rightarrow I=0π/2cos3xcos3x+sin3x I = \int^{ \pi / 2 }_0 \frac { \cos^3 \, x }{ \cos^3 \, x + \sin^3 \, x}
\Rightarrow I=0π/2cos3(π2x)cos3(π2x)+sin3(π2x)dxI = \int^{ \pi / 2 }_0 \frac{ \cos^3 \bigg ( \frac{\pi}{2 } - x \bigg ) }{ \cos^3 \bigg ( \frac{\pi}{2 } - x \bigg ) + \sin ^3 \bigg ( \frac { \pi }{2 } - x \bigg ) } \, dx
\Rightarrow I=0π/2sin3xsin3x+cos3xdx..............(2)I = \int^{ \pi / 2 } _ 0 \frac{ \sin^3 \, x }{ \sin^3 \, x + \cos^3 \, x} \, dx ..............(2)
On adding Eqs. (i) and (ii), we get
2I=0π/21dx2I = \int^{ \pi / 2 }_ 0 \, 1 \, dx \Rightarrow 2I=[x]0π/2=π/22 \, I = [ x ]^{ \pi / 2 }_ 0 = \pi/ 2 \Rightarrow I=π/4I = \pi / 4