Solveeit Logo

Question

Question: The value of \(\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \s...

The value of ln2ln3xsinx2sinx2+sin(ln6x2)dx\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} is
A) 14ln32\dfrac{1}{4}\ln \dfrac{3}{2}
B) 12ln32\dfrac{1}{2}\ln \dfrac{3}{2}
C) ln32\ln \dfrac{3}{2}
D) 16ln32\dfrac{1}{6}\ln \dfrac{3}{2}

Explanation

Solution

Since it is a question of integration, so we will solve this question by looking at the factor with which integration part will be easy to solve for such type of integration we need to determine the result using the integration represented below, In simple words we will have to look in the integration part
abf(x)dx=abf(a+bx)dx\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} }

Complete step by step answer:
We have to find the value of ln2ln3xsinx2sinx2+sin(ln6x2)dx\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx}
Let x2=t{x^2} = t in the given equation
2xdx=dt\Rightarrow 2xdx = dt
Determining the value of xdxxdx, we get
xdx=12dt\Rightarrow xdx = \dfrac{1}{2}dt
Now, After putting the required value, we get
Let I=12ln2ln3sintsint+sin(ln6t)dt.....(1)I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} ….....(1)
Now using the formula,
abf(x)dx=abf(a+bx)dx\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} }
On simplifying, we get
I=12ln2ln3sin[ln3+ln2t]sin(ln3+ln2t)+sin[ln6(ln3+ln2t)]dt\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 3 + \ln 2 - t]}}{{\sin (\ln 3 + \ln 2 - t) + \sin [\ln 6 - (\ln 3 + \ln 2 - t)]}}dt}
Solving further
I=12ln2ln3sin[ln6t]sin(ln6t)+sin[ln6ln6+t]dt\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin [\ln 6 - \ln 6 + t]}}dt}
Hence, we get
I=12ln2ln3sin[ln6t]sin(ln6t)+sin(t)dt...(2)\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt} ...(2)
Now, adding (1) and (2), we get
2I=12ln2ln3sintsint+sin(ln6t)dt+12ln2ln3sin[ln6t]sin(ln6t)+sin(t)dt\Rightarrow 2I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} + \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt}
So, on simplifying the above equation, we get
=12ln2ln3sin[ln6t]+sintsin(ln6t)+sin(t)dt= \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t] + \sin t}}{{\sin (\ln 6 - t) + \sin (t)}}dt}
Numerator and denominator will get cancel and we get
I=14ln2ln31.dt\Rightarrow I = \dfrac{1}{4}\int\limits_{\ln 2}^{\ln 3} {1.dt}
Integrating the above equation, we get
=14[t]ln2ln3= \dfrac{1}{4}[t]_{\ln 2}^{\ln 3}
Substituting the limit, we get
=14[ln3ln2]= \dfrac{1}{4}[\ln 3 - \ln 2]
Now, we can simplify the above equation, by using the property of logarithm
logalogb=logab\Rightarrow \log a - \log b = \log \dfrac{a}{b}
Hence, by using the above equation, we get
I=14ln(32)\Rightarrow I = \dfrac{1}{4}\ln (\dfrac{3}{2})

\therefore The value of ln2ln3xsinx2sinx2+sin(ln6x2)dx\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} is I=14ln(32) I = \dfrac{1}{4}\ln (\dfrac{3}{2}). Hence option (A) is correct.

Note:
In this question, carefully solve the equation after using the formula abf(x)dx=abf(a+b+x)dx\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b + x)dx} } and when adding both equations, don’t forget to add the left side also which will be 2I. Solve further to get the desired result.