Question
Question: The value of \(\int\limits_{ - \pi }^\pi {\dfrac{{{{\cos }^2}x}}{{1 + {a^x}}}dx,a > 0} \) is (a) \...
The value of −π∫π1+axcos2xdx,a>0 is
(a) 2π
(b) aπ
(c) 2π
(d) aπ
Solution
Hint: Here we have to use definite integral properties and trigonometry identities to solve the given integral.
Complete step-by-step answer:
Let I=−π∫π1+axcos2xdx ...... (1)
Now we know from the properties of definite integral that −a∫af(x)dx=−a∫af(−a+a−x)dx
Applying this, we get
I=−π∫π1+a−π+π−xcos2(−π+π−x)dx
I=−π∫π1+a−xcos2(−x)dx
As you know cos(−θ)=cosθ
⇒I=−π∫π1+a−xcos2(x)dx
⇒I=−π∫π1+ax1cos2(x)dx
⇒I=−π∫π1+axaxcos2(x)dx …… (2)
Now add equation (1) and (2)
⇒2I=−π∫π1+axcos2xdx+−π∫π1+axaxcos2(x)dx
⇒2I=−π∫π1+ax(1+ax)cos2(x)dx=−π∫πcos2(x)dx
Now you know cos2x is written as (21+cos2x)
2I=−π∫π(21+cos2x)dx
Now for even functions
⇒I=−a∫af(x)dx=20∫af(x)dx
Now you know that cos is even function so, this integral is written as
2I=20∫π(21+cos2x)dx
I=210∫π(1+cos2x)dx
Now apply the integral
⇒I=21[x+2sin2x]0π
⇒I=21[π+2sin2π−0−2sin0]
⇒I=21[π+20−0−20]
⇒I=2π
So option C is correct.
Note: Always remember integral properties. It will help you a lot in solving the integration problems. Also, be careful with signs. Converting higher power trigonometric functions to lower power is always advisable to ease the solving process.