Solveeit Logo

Question

Mathematics Question on integral

The value of (x21)dxx32x42x2+1\int \limits \frac {(x^2-1)dx}{x^3 \sqrt {2x^4-2x^2+1}} is

A

222x2+1x4+c2 \sqrt {2- \frac {2}{x^2}+ \frac {1}{x^4}}+c

B

22+2x2+1x4+c2 \sqrt {2+ \frac {2}{x^2}+ \frac {1}{x^4}}+c

C

1222x2+1x4+c\frac {1}{2} \sqrt {2- \frac {2}{x^2}+ \frac {1}{x^4}}+c

D

None of these

Answer

1222x2+1x4+c\frac {1}{2} \sqrt {2- \frac {2}{x^2}+ \frac {1}{x^4}}+c

Explanation

Solution

Let I=(x21)dxx32x42x2+1= \int \limits \frac {(x^2-1)dx}{x^3 \sqrt {2x^4-2x^2+1}} \hspace10mm [dividing \, numerator \, and \, enominator \, by \, x^5] \hspace15mm = \int \limits \frac { \bigg (\frac {1}{x^3} - \frac {1}{x^5} \bigg )dx }{\sqrt {2- \frac {2}{x^2} + \frac {1}{x^4}}} Put22x2+1x4=t(4x34x5)dx=dt2- \frac {2}{x^2}+ \frac {1}{x^4}=t \Rightarrow \bigg ( \frac {4}{x^3}- \frac {4}{x^5} \bigg ) dx=dt \therefore \hspace10mm I= \frac {1}{4} \int \limits \frac {dt}{ \sqrt t}= \frac {1}{4}. \frac {t^{1/2}}{1/2}+c \hspace15mm = \frac {1}{2} \sqrt {2- \frac {2}{x^2}+ \frac {1}{x^4}}+c