Question
Mathematics Question on integral
The value of ∫x32x4−2x2+1(x2−1)dx is
A
22−x22+x41+c
B
22+x22+x41+c
C
212−x22+x41+c
D
None of these
Answer
212−x22+x41+c
Explanation
Solution
Let I=∫x32x4−2x2+1(x2−1)dx \hspace10mm [dividing \, numerator \, and \, enominator \, by \, x^5] \hspace15mm = \int \limits \frac { \bigg (\frac {1}{x^3} - \frac {1}{x^5} \bigg )dx }{\sqrt {2- \frac {2}{x^2} + \frac {1}{x^4}}} Put2−x22+x41=t⇒(x34−x54)dx=dt \therefore \hspace10mm I= \frac {1}{4} \int \limits \frac {dt}{ \sqrt t}= \frac {1}{4}. \frac {t^{1/2}}{1/2}+c \hspace15mm = \frac {1}{2} \sqrt {2- \frac {2}{x^2}+ \frac {1}{x^4}}+c