Solveeit Logo

Question

Mathematics Question on Methods of Integration

The value of dxx2(x4+1)3/4\int \limits \frac {dx}{x^2(x^4+1)^{3/4}} is

A

(x4+1x4)14+c\bigg (\frac {x^4+1}{x^4}\bigg )^\frac {1}{4}+ c

B

(x4+1)14+c(x^4+1)^\frac {1}{4}+c

C

(x4+1)14+c-(x^4+1)^\frac {1}{4}+c

D

(x4+1x4)14+c- \bigg (\frac {x^4+1}{x^4} \bigg )^ \frac {1}{4}+c

Answer

(x4+1x4)14+c- \bigg (\frac {x^4+1}{x^4} \bigg )^ \frac {1}{4}+c

Explanation

Solution

dxx2(x4+1)3/4=dxx5(1+1x4)3/4\int \limits \frac {dx}{x^2(x^4+1)^{3/4}}= \int \limits \frac {dx}{x^5 \bigg (1+ \frac {1}{x^4} \bigg )^{3/4}}
put 1+1x4=t44x5dx=4t3dtdxx5=t3dt1+ \frac {1}{x^4}=t^4 \Rightarrow \frac {-4}{x^5}dx=4t^3dt \Rightarrow \frac {dx}{x^5}=-t^3dt
Hence, the integral becomes
t3dtt3=dt=t+c=(1+1x4)1/4+c\int \limits \frac {-t^3dt}{t^3}=- \int \limits dt=-t+c=- \bigg (1+ \frac {1}{x^4} \bigg )^{1/4}+ c