Solveeit Logo

Question

Question: The value of \(\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{1 - \sin x}}} dx\) is ...

The value of π4π411sinxdx\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{1 - \sin x}}} dx is equal to-
A) 11
B) 2 - 2
C) 22
D) 1 - 1

Explanation

Solution

In the above question we are given a definite integral and we have to find its value. Since in case of integration there are only few functions whose integration is known to us. And here we do not directly know the integration of 11sinx\dfrac{1}{{1 - \sin x}}, so we have to reduce the given function to some other function whose integration is known to us.So, we can use rationalization and further use trigonometric formulas to solve the above problem.

Complete step-by-step answer:
In the above question we have to find the value of definite integral-
π4π411sinxdx(1)\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{1 - \sin x}}} dx ----(1)
Now we know to calculate integration we need to reduce the function to another function whose integration is known to us.
Here the integration of a given function, 11sinx\dfrac{1}{{1 - \sin x}} is not known to us.
So, we will try to reduce this function into another function whose integration is not known.
Now consider (1)-
π4π411sinxdx\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{1 - \sin x}}} dx
Now multiplying and dividing 1sinx1 - \sin x with the function 11sinx\dfrac{1}{{1 - \sin x}}, we get
=π4π4(11sinx)(1+sinx1+sinx)dx= \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\dfrac{1}{{1 - \sin x}}} \right)} \left( {\dfrac{{1 + \sin x}}{{1 + \sin x}}} \right)dx
Now using the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} for denominator, we get
=π4π4(1+sinx(1)2(sinx)2)dx= \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\dfrac{{1 + \sin x}}{{{{\left( 1 \right)}^2} - {{\left( {\sin x} \right)}^2}}}} \right)} dx
Now we know that
sin2x+cos2x=1 cos2x=1sin2x  {\sin ^2}x + {\cos ^2}x = 1 \\\ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x \\\
And substituting value of 1sin2x1 - {\sin ^2}x in denominator, we get
=π4π4(1+sinxcos2x)dx= \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\dfrac{{1 + \sin x}}{{{{\cos }^2}x}}} \right)} dx
Now solving further, we get
=π4π4(1cos2x+sinxcos2x)dx= \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left( {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{\sin x}}{{{{\cos }^2}x}}} \right)} dx
Now using the properties of integral, we know ab(f(x)+g(x))dx=abf(x)dx+abg(x)dx\int\limits_a^b {\left( {f(x) + g(x)} \right)} dx = \int\limits_a^b {f(x)} dx + \int\limits_a^b {g(x)} dx
So, using this property, we get
=π4π41cos2xdx+π4π4sinxcos2xdx= \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\cos }^2}x}}dx + \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{{\sin x}}{{{{\cos }^2}x}}} } dx
Now we can also write as
=π4π41cos2xdx+π4π41(cosx)sinx(cosx)dx= \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\cos }^2}x}}dx + \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{\left( {\cos x} \right)}}\dfrac{{\sin x}}{{\left( {\cos x} \right)}}} } dx
Now by trigonometry we know that 1cosx=secx\dfrac{1}{{\cos x}} = \sec x and sinxcosx=tanx\dfrac{{sinx}}{{\cos x}} = \tan x
So, we get
=π4π4sec2xdx+π4π4secx×tanxdx(2)= \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sec }^2}xdx + \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\sec x \times \tan x} } dx ---(2)
Now we know the integration of sec2x{\sec ^2}x and secx×tanx\sec x \times \tan x, that is
sec2xdx=tanx+c1, c1 is constant\int {{{\sec }^2}xdx = \tan x + {c_1},{\text{ }}{c_1}{\text{ is constant}}}
secxdx\int \sec x dx = secx×tanx\sec x \times \tan x+ c2, c2 is constant{c_2},{\text{ }}{c_2}{\text{ is constant}}
Now substituting values of these integrals in (2), we get
=tanxπ4π4+secxπ4π4= \left. {\tan x} \right|_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} + \left. {\sec x} \right|_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}}
Now we know f(x)ba=f(a)f(b)\left. {f(x)} \right|_b^a = f(a) - f(b), so we get,
=tan(π4)tan(π4)+sec(π4)sec(π4)\Rightarrow = \tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( { - \dfrac{\pi }{4}} \right) + \sec \left( {\dfrac{\pi }{4}} \right) - \sec \left( { - \dfrac{\pi }{4}} \right)
now using trigonometry, we know tan(x)=tanx\tan \left( { - x} \right) = - \tan x and sec(x)=sec(x)\sec \left( { - x} \right) = \sec \left( x \right), so we get
=tan(π4)+tan(π4)+sec(π4)sec(π4) =2tan(π4)  \Rightarrow = \tan \left( {\dfrac{\pi }{4}} \right) + \tan \left( {\dfrac{\pi }{4}} \right) + \sec \left( {\dfrac{\pi }{4}} \right) - \sec \left( {\dfrac{\pi }{4}} \right) \\\ \Rightarrow = 2\tan \left( {\dfrac{\pi }{4}} \right) \\\
Now using trigonometry, substituting tanπ4=1\tan \dfrac{\pi }{4} = 1, we get
π4π411sinxdx=2\Rightarrow \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{1 - \sin x}}} dx = 2
So, the value of π4π411sinxdx\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{1 - \sin x}}} dx is equal to 22

So, the correct answer is “Option C”.

Note: We can also solve the question π4π411sinxdx\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{1 - \sin x}}} dx, By substituting 11 in denominator by 1=cos2x2+sin2x21 = {\cos ^2}\dfrac{x}{2} + {\sin ^2}\dfrac{x}{2} and sinx\sin x by sinx=2sinx2cosx2\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} and further simplifying the numerator and denominator by using basic algebraic identities we get the same answer But using this way the question becomes very lengthy and sometimes confusing also.