Question
Question: The value of \(\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}...
The value of −2π∫2π1+2xsin2xdx is
A) 4π
B) 4π
C) 8π
D) 2π
Solution
If I is given as I=a∫bf(x)dx, then x can be replaced by a+b−x, then the value of I remains unchanged. So, I=a∫bf(a+b−x)dx.
Then add both, we will get our value.
Complete step-by-step answer:
Let I=−2π∫2π1+2xsin2xdx.................(1)
As we know that if I=a∫bf(x)dx, then by using king property , I=a∫bf(a+b−x)dx.
So, using king property in equation (1),
⇒ I=−2π∫2π1+2(2π−2π−x)sin2(2π−2π−x)dx
⇒ I=−2π∫2π1+2−xsin2(−x)dx
As we know sin(−x)=−sinx , so, sin2(−x)=sin2x.
⇒I=−2π∫2π1+2x1sin2(x)dx Now taking LCM of 2x, ⇒I=−2π∫2π2x+12xsin2(x)dx……………………. (2)
Now, if we add equation (1) and (2),
⇒I+I=−2π∫2π(2x+12xsin2(x)+1+2xsin2x)dx ⇒2I=−2π∫2πsin2x2x+12x+1⇒2I=−2π∫2πsin2xdx
As we know that cos2θ=1−2sin2θ, so, sin2θ=21−cos2θ. Using this value we get,
⇒2I=−2π∫2π21−cos2xdx ⇒2I=21−2π∫2π(1−cos2x)dx ⇒2I=21[x−2sin2x]−2π2π ⇒I=41[(2π−(−2π))−(2sinπ−2sin(−π))] ⇒I=41[π−sinπ]=4π
(As we know sinnπ=0 ,where n is an integer)
So, value of −2π∫2π1+2xsin2xdx is 4π
So, option B is the correct answer.
Note: As we know, if f(x)=f(−x), then it is an even function and when f(x) is an even function, then −a∫af(x)dx=20∫af(x)dx. And if f(x) is odd, means f(x)=−f(−x), then −a∫af(x)dx=0.