Solveeit Logo

Question

Question: The value of \(\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}...

The value of π2π2sin2x1+2xdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} is
A) 4π4\pi
B) π4\dfrac{\pi }{4}
C) π8\dfrac{\pi }{8}
D) π2\dfrac{\pi }{2}

Explanation

Solution

If II is given as I=abf(x)dxI = \int\limits_a^b {f\left( x \right)dx} , then xx can be replaced by a+bxa + b - x, then the value of II remains unchanged. So, I=abf(a+bx)dxI = \int\limits_a^b {f\left( {a + b - x} \right)dx} .
Then add both, we will get our value.

Complete step-by-step answer:
Let I=π2π2sin2x1+2xdxI = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} .................(1)
As we know that if I=abf(x)dxI = \int\limits_a^b {f\left( x \right)dx} , then by using king property , I=abf(a+bx)dxI = \int\limits_a^b {f\left( {a + b - x} \right)dx} .
So, using king property in equation (1),
\Rightarrow I=π2π2sin2(π2π2x)1+2(π2π2x)dxI = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} - x} \right)}}{{1 + {2^{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} - x} \right)}}}}} dx
\Rightarrow I=π2π2sin2(x)1+2xdxI = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( { - x} \right)}}{{1 + {2^{ - x}}}}} dx
As we know sin(x)=sinx , so, sin2(x)=sin2x\sin \left( { - x} \right) = - \sin x{\text{ , so, }}{\sin ^2}\left( { - x} \right) = {\sin ^2}x.
I=π2π2sin2(x)1+12xdx Now taking LCM of 2x, I=π2π22xsin2(x)2x+1dx. (2)   \Rightarrow I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}\left( x \right)}}{{1 + \dfrac{1}{{{2^x}}}}}} dx \\\ {\text{Now taking LCM of }}{2^x}, \\\ \Rightarrow I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{2^x}{{\sin }^2}\left( x \right)}}{{{2^x} + 1}}} dx…………………….{\text{ (2)}} \\\ \\\
Now, if we add equation (1) and (2),
I+I=π2π2(2xsin2(x)2x+1+sin2x1+2x)dx 2I=π2π2sin2x2x+12x+12I=π2π2sin2xdx  \Rightarrow I + I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\dfrac{{{2^x}{{\sin }^2}\left( x \right)}}{{{2^x} + 1}} + \dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}} \right)} dx \\\ \Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}x\dfrac{{{2^x} + 1}}{{{2^x} + 1}}} \Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{{\sin }^2}x} dx \\\
As we know that cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta , so, sin2θ=1cos2θ2{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}. Using this value we get,
2I=π2π21cos2x2dx 2I=12π2π2(1cos2x)dx 2I=12[xsin2x2]π2π2 I=14[(π2(π2))(sinπ2sin(π)2)] I=14[πsinπ]=π4  \Rightarrow 2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2x}}{2}dx} \\\ \Rightarrow 2I = \dfrac{1}{2}\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {1 - \cos 2x} \right)dx} \\\ \Rightarrow 2I = \dfrac{1}{2}{\left[ {x - \dfrac{{\sin 2x}}{2}} \right]_{ - \dfrac{\pi }{2}}}^{\dfrac{\pi }{2}} \\\ \Rightarrow I = \dfrac{1}{4}\left[ {\left( {\dfrac{\pi }{2} - \left( { - \dfrac{\pi }{2}} \right)} \right) - \left( {\dfrac{{\sin \pi }}{2} - \dfrac{{\sin \left( { - \pi } \right)}}{2}} \right)} \right] \\\ \Rightarrow I = \dfrac{1}{4}\left[ {\pi - \sin \pi } \right] = \dfrac{\pi }{4} \\\
(As we know sinnπ=0\sin n\pi = 0 ,where nn is an integer)
So, value of π2π2sin2x1+2xdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} is π4\dfrac{\pi }{4}

So, option B is the correct answer.

Note: As we know, if f(x)=f(x)f\left( x \right) = f\left( { - x} \right), then it is an even function and when f(x)f\left( x \right) is an even function, then aaf(x)dx=20af(x)dx\int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx} } . And if f(x)f\left( x \right) is odd, means f(x)=f(x)f\left( x \right) = - f\left( { - x} \right), then aaf(x)dx=0\int\limits_{ - a}^a {f\left( x \right)dx = 0} .