Solveeit Logo

Question

Question: The value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{{e^{\sin x}} + 1}}}...

The value of π2π2dxesinx+1\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{{e^{\sin x}} + 1}}} is equal to
(a) 0
(b) 1
(c) π2 - \dfrac{\pi }{2}
(d) π2\dfrac{\pi }{2}

Explanation

Solution

Here, we need to evaluate the given integral. Let. We will find the value of the negative value of the integral using the rules of exponents trigonometry. Then, we will use the properties of definite integrals to find the value of the given integral.

Formula Used: We will use the following formulas:
A) The sine of a negative angle θ- \theta is equal to the negative of the sine of the positive angle θ\theta .
B) The numberab{a^{ - b}} is equal to the reciprocal of the number aa raised to the positive power bb, that is ab=(1a)b{a^{ - b}} = {\left( {\dfrac{1}{a}} \right)^b}.
C) The integral of the form aaf(x)dx\int\limits_{ - a}^a {f\left( x \right)} dx can be written as aaf(x)dx=0a[f(x)+f(x)]dx\int\limits_{ - a}^a {f\left( x \right)} dx = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} dx.

Complete step by step solution:
We will use the properties of definite integrals to simplify the given integral.
The given integral is π2π2dxesinx+1\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{{e^{\sin x}} + 1}}} .
Let f(x)=1esinx+1f\left( x \right) = \dfrac{1}{{{e^{\sin x}} + 1}}.
Substituting xx as x - x, we get
f(x)=1esin(x)+1\Rightarrow f\left( { - x} \right) = \dfrac{1}{{{e^{\sin \left( { - x} \right)}} + 1}}
The sine of a negative angle θ- \theta is equal to the negative of the sine of the positive angle
θ\theta .
Thus, we get

sin(x)=sinx\sin \left( { - x} \right) = - \sin x
Substituting sin(x)=sinx\sin \left( { - x} \right) = - \sin x in the equation f(x)=1esin(x)+1f\left( { - x} \right) = \dfrac{1}{{{e^{\sin \left( { - x} \right)}} + 1}}, we get
f(x)=1esinx+1\Rightarrow f\left( { - x} \right) = \dfrac{1}{{{e^{ - \sin x}} + 1}}
The numberab{a^{ - b}} is equal to the reciprocal of the number aa raised to the positive power bb, that is ab=(1a)b{a^{ - b}} = {\left( {\dfrac{1}{a}} \right)^b}.
Therefore, we get
esinx=1esinx{e^{ - \sin x}} = \dfrac{1}{{{e^{\sin x}}}}
Substituting esinx=1esinx{e^{ - \sin x}} = \dfrac{1}{{{e^{\sin x}}}} in the equation f(x)=1esinx+1f\left( { - x} \right) = \dfrac{1}{{{e^{ - \sin x}} + 1}}, we get
f(x)=11esinx+1\Rightarrow f\left( { - x} \right) = \dfrac{1}{{\dfrac{1}{{{e^{\sin x}}}} + 1}}
Simplifying the expression, we get
f(x)=11+esinxesinx f(x)=esinx1+esinx\begin{array}{l} \Rightarrow f\left( { - x} \right) = \dfrac{1}{{\dfrac{{1 + {e^{\sin x}}}}{{{e^{\sin x}}}}}}\\\ \Rightarrow f\left( { - x} \right) = \dfrac{{{e^{\sin x}}}}{{1 + {e^{\sin x}}}}\end{array}
Now, we know that the integral of the form aaf(x)dx\int\limits_{ - a}^a {f\left( x \right)} dx can be written as aaf(x)dx=0a[f(x)+f(x)]dx\int\limits_{ - a}^a {f\left( x \right)} dx = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} dx.
Therefore, substituting a=π2a = \dfrac{\pi }{2}, f(x)=1esinx+1f\left( x \right) = \dfrac{1}{{{e^{\sin x}} + 1}} and f(x)=esinx1+esinxf\left( { - x} \right) = \dfrac{{{e^{\sin x}}}}{{1 + {e^{\sin x}}}} in the formula, we get
π2π21esinx+1dx=0π2[1esinx+1+esinx1+esinx]dx\Rightarrow \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{{e^{\sin x}} + 1}}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{1}{{{e^{\sin x}} + 1}} + \dfrac{{{e^{\sin x}}}}{{1 + {e^{\sin x}}}}} \right]} dx
Adding the terms of the expression, we get
π2π21esinx+1dx=0π2[1+esinx1+esinx]dx\Rightarrow \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{{e^{\sin x}} + 1}}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{{1 + {e^{\sin x}}}}{{1 + {e^{\sin x}}}}} \right]} dx
Simplifying the expression, we get
π2π21esinx+1dx=0π2[1]dx\Rightarrow \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{{e^{\sin x}} + 1}}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\left[ 1 \right]} dx
The integral of a constant with respect to xx is xx.
Therefore, we get
π2π21esinx+1dx=(x)0π2\Rightarrow \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{{e^{\sin x}} + 1}}} dx = \left. {\left( x \right)} \right|_0^{\dfrac{\pi }{2}}
Substituting the limits, we get
π2π21esinx+1dx=π20\Rightarrow \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{{e^{\sin x}} + 1}}} dx = \dfrac{\pi }{2} - 0
Therefore, we get
π2π21esinx+1dx=π2\Rightarrow \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{1}{{{e^{\sin x}} + 1}}} dx = \dfrac{\pi }{2}
Thus, the value of the integral π2π2dxesinx+1\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{{e^{\sin x}} + 1}}} is π2\dfrac{\pi }{2}.

\therefore The correct option is option (d).

Note:
We used the property aaf(x)dx=0a[f(x)+f(x)]dx\int\limits_{ - a}^a {f\left( x \right)} dx = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} dx to solve the given problem. This property is derived using the property of odd and even functions, that is aaf(x)dx=20af(x)dx\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx if f(x)f\left( x \right) is even, or aaf(x)dx=0\int\limits_{ - a}^a {f\left( x \right)} dx = 0 if f(x)f\left( x \right) is odd. Since the graph of an even function is symmetric about the vertical axis, we get 0af(x)dx=a0f(x)dx\int\limits_0^a {f\left( x \right)} dx = \int\limits_{ - a}^0 {f\left( x \right)} dx. Also, since the graph of an odd function is symmetric in opposite quadrants, we get a0f(x)dx=0af(x)dx\int\limits_{ - a}^0 {f\left( x \right)} dx = - \int\limits_0^a {f\left( x \right)} dx. From these equations, we get aaf(x)dx=0a[f(x)+f(x)]dx\int\limits_{ - a}^a {f\left( x \right)} dx = \int\limits_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} dx.