Solveeit Logo

Question

Question: The value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}...

The value of π2π2x2cosx1+exdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx is equal to
(A) π242\dfrac{{{\pi ^2}}}{4} - 2
(B) π24+2\dfrac{{{\pi ^2}}}{4} + 2
(C) π2eπ2{\pi ^2} - {e^{\dfrac{\pi }{2}}}
(D) π2+eπ2{\pi ^2} + {e^{\dfrac{\pi }{2}}}

Explanation

Solution

To solve this integral we use some property of integral
1. aaf(x)dx=aaf(x)dx\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^a {f( - x)dx} }
2. aaf(x)dx=20af(x)dx\int\limits_{ - a}^a {f(x)dx = 2\int\limits_0^a {f(x)dx} } this property holds only when the given function is even.
3. Integration by part:
(u.v)dx=uvdx(dudx×vdx)dx\int {(u.v)dx} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}} \times \int {vdx} } \right)} } dx

Complete step-by-step answer:
Given function II= π2π2x2cosx1+exdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx - - - - - - equation (1)
Now by using property aaf(x)dx=aaf(x)dx\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^a {f( - x)dx} }
By using this we can write
II= π2π2(x)2cos(x)1+exdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{( - x)}^2}\cos ( - x)}}{{1 + {e^{ - x}}}}} dx
Now arrange this equation
We get II=π2π2x2excosx1+exdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}{e^x}\cos x}}{{1 + {e^x}}}} dx - - - - - - - - -equation (2)
cos(x)=cosx\because \cos ( - x) = \cos x
Now add equation 1 and equation 2
2I2I= π2π2x2cosx1+exdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx + π2π2x2excosx1+exdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}{e^x}\cos x}}{{1 + {e^x}}}} dx
Now we arrange this
2I2I= π2π2x2cosx(1+ex)1+exdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x(1 + {e^x})}}{{1 + {e^x}}}} dx
2I2I= π2π2x2cosxdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{x^2}\cos x} dx
Now by using property second but first we check the function f(x)=x2cosxf(x) = {x^2}\cos x is even or not
So when a function is even it follow following property
f(x)=f(x)f( - x) = f(x)
So f(x)f( - x) = (x)2cos(x){( - x)^2}\cos ( - x)
So f(x)=x2cosxf( - x) = {x^2}\cos x
So we can say that the given function is an even function
So 2I2I= π2π2x2cosxdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{x^2}\cos x} dx can be written as
2I2I= 20π2x2cosxdx2\int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x} dx by using property 2 given in hint.
So from here
II= 0π2x2cosxdx\int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x} dx
Now by using integration by part theorem
I=x20π2cosx0π2ddxx2×cosxdxI = {x^2}\int\limits_0^{\dfrac{\pi }{2}} {\cos x} - \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{d}{{dx}}} {x^2} \times \int {\cos xdx}
I=[x2sinx]0π20π22x.sinxI = \left[ {{x^2}\sin x} \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} dxdx
Now we solve 0π22x.sinxdx\int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} dx
Now we use integration by part theorem
0π22x.sinxdx\int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} dx = 2xsinxddx(2x)sinxdx2x\int {\sin x - \int {\dfrac{d}{{dx}}} } (2x)\int {\sin xdx}
So from this we get
2x(cosx)2(cosx)dx2x( - \cos x) - \int {2( - \cos x)dx}
2xcosx+2sinx- 2x\cos x + 2\sin x
Now from this we can write
I=[x2sinx+2xcosx2sinx]0π2I = [{x^2}\sin x + 2x\cos x - 2\sin x]_0^{\dfrac{\pi }{2}}
Now putting limit
We get
I=[π24sinπ2+2×π2cosπ22sinπ2][0×sin0+2×0×cos02sin0]I = \left[ {\dfrac{{{\pi ^2}}}{4}\sin \dfrac{\pi }{2} + 2 \times \dfrac{\pi }{2}\cos \dfrac{\pi }{2} - 2\sin \dfrac{\pi }{2}} \right] - \left[ {0 \times \sin 0 + 2 \times 0 \times \cos 0 - 2\sin 0} \right]
now after solving we get
I=I = π24+02\dfrac{{{\pi ^2}}}{4} + 0 - 2
sinπ2=cos0=1\because \sin \dfrac{\pi }{2} = \cos 0 = 1 and sin0=0\sin 0 = 0
So from here we can say that
I=π242I = \dfrac{{{\pi ^2}}}{4} - 2
So option A is correct.

Note: aaf(x)=0\int\limits_{ - a}^a {f(x) = 0} when the f(x)f(x) is an odd function. This property is always true for odd functions.
A function f(x)f(x) is said to be an odd function if f(x)=f(x)f( - x) = - f(x) .