Question
Question: The value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}...
The value of −2π∫2π1+exx2cosxdx is equal to
(A) 4π2−2
(B) 4π2+2
(C) π2−e2π
(D) π2+e2π
Solution
To solve this integral we use some property of integral
1. −a∫af(x)dx=−a∫af(−x)dx
2. −a∫af(x)dx=20∫af(x)dx this property holds only when the given function is even.
3. Integration by part:
∫(u.v)dx=u∫vdx−∫(dxdu×∫vdx)dx
Complete step-by-step answer:
Given function I= −2π∫2π1+exx2cosxdx - - - - - - equation (1)
Now by using property −a∫af(x)dx=−a∫af(−x)dx
By using this we can write
I= −2π∫2π1+e−x(−x)2cos(−x)dx
Now arrange this equation
We get I=−2π∫2π1+exx2excosxdx - - - - - - - - -equation (2)
∵cos(−x)=cosx
Now add equation 1 and equation 2
2I= −2π∫2π1+exx2cosxdx + −2π∫2π1+exx2excosxdx
Now we arrange this
2I= −2π∫2π1+exx2cosx(1+ex)dx
2I= −2π∫2πx2cosxdx
Now by using property second but first we check the function f(x)=x2cosx is even or not
So when a function is even it follow following property
f(−x)=f(x)
So f(−x) = (−x)2cos(−x)
So f(−x)=x2cosx
So we can say that the given function is an even function
So 2I= −2π∫2πx2cosxdx can be written as
2I= 20∫2πx2cosxdx by using property 2 given in hint.
So from here
I= 0∫2πx2cosxdx
Now by using integration by part theorem
I=x20∫2πcosx−0∫2πdxdx2×∫cosxdx
I=[x2sinx]02π−0∫2π2x.sinx dx
Now we solve 0∫2π2x.sinxdx
Now we use integration by part theorem
0∫2π2x.sinxdx = 2x∫sinx−∫dxd(2x)∫sinxdx
So from this we get
2x(−cosx)−∫2(−cosx)dx
−2xcosx+2sinx
Now from this we can write
I=[x2sinx+2xcosx−2sinx]02π
Now putting limit
We get
I=[4π2sin2π+2×2πcos2π−2sin2π]−[0×sin0+2×0×cos0−2sin0]
now after solving we get
I= 4π2+0−2
∵sin2π=cos0=1 and sin0=0
So from here we can say that
I=4π2−2
So option A is correct.
Note: −a∫af(x)=0 when the f(x) is an odd function. This property is always true for odd functions.
A function f(x) is said to be an odd function if f(−x)=−f(x) .