Solveeit Logo

Question

Question: The value of \(\int\limits_{ - 2}^2 {\cos e{c^{ - 1}}\left( {\cos ecx} \right)dx} \) a.1 b.0 ...

The value of 22cosec1(cosecx)dx\int\limits_{ - 2}^2 {\cos e{c^{ - 1}}\left( {\cos ecx} \right)dx}
a.1
b.0
c.4
d.2

Explanation

Solution

We know that cosec1(cosecx)\cos e{c^{ - 1}}\left( {\cos ecx} \right)= x. And so our integral becomes 22xdx\int\limits_{ - 2}^2 {xdx} and this can be solved by using the formula xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} .

Complete step-by-step answer:
Here our integrand is cosec1(cosecx)\cos e{c^{ - 1}}\left( {\cos ecx} \right)
And we know that cosec1(cosecx)\cos e{c^{ - 1}}\left( {\cos ecx} \right)= x
Hence our integral becomes 22xdx\int\limits_{ - 2}^2 {xdx}
We know that xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
Applying this formula we get,
22xdx=[x22]22\Rightarrow \int\limits_{ - 2}^2 {xdx} = \left[ {\dfrac{{{x^2}}}{2}} \right]_{ - 2}^2
When the limits are given we get the value by subtracting the value of lower limit from upper limit
[222(2)22] [4242]=0  \Rightarrow \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2}} \right] \\\ \Rightarrow \left[ {\dfrac{4}{2} - \dfrac{4}{2}} \right] = 0 \\\
Hence the required value is 0
The correct option is b.

Note: Like cosec1(cosecx)\cos e{c^{ - 1}}\left( {\cos ecx} \right) = x we have
sin1(sinx){\sin ^{ - 1}}\left( {\sin x} \right)= x
cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x
sec1(secx)=xse{c^{ - 1}}\left( {secx} \right) = x
The tangent inverse function tan1x{\tan ^{ - 1}}x is an important integral function, but it has no direct method to find it. We shall find the integration of tangent inverse by using the integration by parts method