Solveeit Logo

Question

Question: The value of \(\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^...

The value of 0sin2xsin1tdt+0cos2xcos1tdt\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt is:
A) π2\dfrac{\pi }{2}
B) 11
C) π4\dfrac{\pi }{4}
D) None of these

Explanation

Solution

Here we have to find the value of 0sin2xsin1tdt+0cos2xcos1tdt\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt. Take and solve first part i.e. 0sin2xsin1tdt\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt. In the first part assume t=sin2θt={{\sin }^{2}}\theta and solve it. Also, for the second part assume t=cos2θt={{\cos }^{2}}\theta . After simplifying them apply some properties and add them. Try it, you will definitely get the answer.

Complete step by step solution:
Here we are given 0sin2xsin1tdt+0cos2xcos1tdt\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt.
So to solve this let us take first part i.e. 0sin2xsin1tdt\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt.
In this take t=sin2θt={{\sin }^{2}}\theta .
Now differentiating t=sin2θt={{\sin }^{2}}\theta we get,
dt=2sinθcosθdθ=sin2θdθdt=2\sin \theta \cos \theta d\theta =\sin 2\theta d\theta
So when t=0t=0 then θ=0\theta =0. Also, when t=sin2xt={{\sin }^{2}}x then θ=x\theta =x.
So substituting all values in first part we get,
0sin2xsin1tdt=0xsin1(sin2θ)sin2θdθ\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sqrt{{{\sin }^{2}}\theta })}\sin 2\theta d\theta
Now simplifying we get,
0sin2xsin1tdt=0xsin1(sin2θ)sin2θdθ\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sqrt{{{\sin }^{2}}\theta })}\sin 2\theta d\theta
Again, simplifying in simple manner we get,
0sin2xsin1tdt=0xsin1(sinθ)sin2θdθ\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sin \theta )}\sin 2\theta d\theta
Again, simplifying we get,
0sin2xsin1tdt=0xθsin2θdθ\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta ……….. (1)
Now let us take second part i.e. 0cos2xcos1tdt\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt.
In this take t=cos2θt={{\cos }^{2}}\theta .
Now differentiating t=cos2θt={{\cos }^{2}}\theta we get,
dt=2sinθcosθdθ=sin2θdθdt=-2\sin \theta \cos \theta d\theta =-\sin 2\theta d\theta
So, when t=0t=0 then θ=π2\theta =\dfrac{\pi }{2}. Also, when t=cos2xt={{\cos }^{2}}x then θ=x\theta =x.
Substituting all values in first part we get,
0cos2xcos1tdt=π2xcos1(cos2θ)(sin2θ)dθ\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{\dfrac{\pi }{2}}^{x}{{{\cos }^{-1}}(\sqrt{{{\cos }^{2}}\theta })}(-\sin 2\theta )d\theta
Now simplifying we get,
0cos2xcos1tdt=π2xcos1(cos2θ)(sin2θ)dθ\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{\dfrac{\pi }{2}}^{x}{{{\cos }^{-1}}({{\cos }^{2}}\theta )}(-\sin 2\theta )d\theta
0cos2xcos1tdt=π2xθsin2θdθ\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=-\int\limits_{\dfrac{\pi }{2}}^{x}{\theta }\sin 2\theta d\theta
So, we know the property that, if there is minus sign so if we want to remove it the limits will interchange. So, it becomes
0cos2xcos1tdt=xπ2θsin2θdθ\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta …….. (2)
Now adding equation (1) and (2) we get,
0sin2xsin1tdt+0cos2xcos1tdt=0xθsin2θdθ+xπ2θsin2θdθ\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta +\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta
Now we know the property that, abf(x)dx+bcf(x)dx=acf(x)dx\int\limits_{a}^{b}{f(x)dx+}\int\limits_{b}^{c}{f(x)dx=}\int\limits_{a}^{c}{f(x)dx}.
Applying above property we get,
0sin2xsin1tdt+0cos2xcos1tdt=0xθsin2θdθ+xπ2θsin2θdθ=0π2θsin2θdθ\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta +\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta
So now taking i.e. integrating 0π2θsin2θdθ\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta .
Now integrating the above by Integration by parts we get,
0π2θsin2θdθ=[θ×(cos2θ)2]0π20π2(cos2θ)2dθ\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}-\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{(-\cos 2\theta )}{2}d\theta }
Now simplifying we get,
0π2θsin2θdθ=[θ×(cos2θ)2]0π2+120π2cos2θdθ\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta } ……….. (3)
Now let us find the integration of 0π2cos2θdθ\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta },
0π2cos2θdθ=[sin2θ2]0π2\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }=\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}
Now substituting 0π2cos2θdθ=[sin2θ2]0π2\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }=\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}} in equation (3) we get,
0π2θsin2θdθ=[θ×(cos2θ)2]0π2+12[sin2θ2]0π2\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}
Now applying limit we get,
0π2θsin2θdθ=[θ×(cos2θ)2]0π2+12[sin2θ2]0π2=[π2×(12)×cosπ]\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}=\left[ \dfrac{\pi }{2}\times \left( -\dfrac{1}{2} \right)\times \cos \pi \right]
Here, cosπ=1\cos \pi =-1. Simplifying we get,
0π2θsin2θdθ=[π2×(12)×1]\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \dfrac{\pi }{2}\times \left( -\dfrac{1}{2} \right)\times -1 \right]
0π2θsin2θdθ=π4\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\dfrac{\pi }{4}
Therefore, 0sin2xsin1tdt+0cos2xcos1tdt=π4\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\dfrac{\pi }{4}.

We get the correct answer as option (C).

Note:
Here in the problem, you must know the assumption as we have took t=sin2θt={{\sin }^{2}}\theta in first part and t=cos2θt={{\cos }^{2}}\theta in second part. The properties related to minus sign and integration must be known. While substitution be aware that no terms are missing.