Question
Question: The value of \(\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^...
The value of 0∫sin2xsin−1tdt+0∫cos2xcos−1tdt is:
A) 2π
B) 1
C) 4π
D) None of these
Solution
Here we have to find the value of 0∫sin2xsin−1tdt+0∫cos2xcos−1tdt. Take and solve first part i.e. 0∫sin2xsin−1tdt. In the first part assume t=sin2θ and solve it. Also, for the second part assume t=cos2θ. After simplifying them apply some properties and add them. Try it, you will definitely get the answer.
Complete step by step solution:
Here we are given 0∫sin2xsin−1tdt+0∫cos2xcos−1tdt.
So to solve this let us take first part i.e. 0∫sin2xsin−1tdt.
In this take t=sin2θ .
Now differentiating t=sin2θ we get,
dt=2sinθcosθdθ=sin2θdθ
So when t=0 then θ=0. Also, when t=sin2x then θ=x.
So substituting all values in first part we get,
0∫sin2xsin−1tdt=0∫xsin−1(sin2θ)sin2θdθ
Now simplifying we get,
0∫sin2xsin−1tdt=0∫xsin−1(sin2θ)sin2θdθ
Again, simplifying in simple manner we get,
0∫sin2xsin−1tdt=0∫xsin−1(sinθ)sin2θdθ
Again, simplifying we get,
0∫sin2xsin−1tdt=0∫xθsin2θdθ ……….. (1)
Now let us take second part i.e. 0∫cos2xcos−1tdt.
In this take t=cos2θ .
Now differentiating t=cos2θ we get,
dt=−2sinθcosθdθ=−sin2θdθ
So, when t=0 then θ=2π. Also, when t=cos2x then θ=x.
Substituting all values in first part we get,
0∫cos2xcos−1tdt=2π∫xcos−1(cos2θ)(−sin2θ)dθ
Now simplifying we get,
0∫cos2xcos−1tdt=2π∫xcos−1(cos2θ)(−sin2θ)dθ
0∫cos2xcos−1tdt=−2π∫xθsin2θdθ
So, we know the property that, if there is minus sign so if we want to remove it the limits will interchange. So, it becomes
0∫cos2xcos−1tdt=x∫2πθsin2θdθ …….. (2)
Now adding equation (1) and (2) we get,
0∫sin2xsin−1tdt+0∫cos2xcos−1tdt=0∫xθsin2θdθ+x∫2πθsin2θdθ
Now we know the property that, a∫bf(x)dx+b∫cf(x)dx=a∫cf(x)dx.
Applying above property we get,
0∫sin2xsin−1tdt+0∫cos2xcos−1tdt=0∫xθsin2θdθ+x∫2πθsin2θdθ=0∫2πθsin2θdθ
So now taking i.e. integrating 0∫2πθsin2θdθ.
Now integrating the above by Integration by parts we get,
0∫2πθsin2θdθ=[θ×2(−cos2θ)]02π−0∫2π2(−cos2θ)dθ
Now simplifying we get,
0∫2πθsin2θdθ=[θ×2(−cos2θ)]02π+210∫2πcos2θdθ ……….. (3)
Now let us find the integration of 0∫2πcos2θdθ,
0∫2πcos2θdθ=[2sin2θ]02π
Now substituting 0∫2πcos2θdθ=[2sin2θ]02π in equation (3) we get,
0∫2πθsin2θdθ=[θ×2(−cos2θ)]02π+21[2sin2θ]02π
Now applying limit we get,
0∫2πθsin2θdθ=[θ×2(−cos2θ)]02π+21[2sin2θ]02π=[2π×(−21)×cosπ]
Here, cosπ=−1. Simplifying we get,
0∫2πθsin2θdθ=[2π×(−21)×−1]
0∫2πθsin2θdθ=4π
Therefore, 0∫sin2xsin−1tdt+0∫cos2xcos−1tdt=4π.
We get the correct answer as option (C).
Note:
Here in the problem, you must know the assumption as we have took t=sin2θ in first part and t=cos2θ in second part. The properties related to minus sign and integration must be known. While substitution be aware that no terms are missing.