Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of 0πecos⁡ xsinx(1+cos2x)(ecos⁡ x+ecos⁡ x)dx\int\limits_0^π \frac {e^{cos⁡\ x} sin⁡x}{(1+cos^2⁡x)(e^{cos⁡\ x}+e^{−cos⁡\ x})}dx is equal to :

A

π24\frac {\pi^2}{4}

B

π22\frac {\pi^2}{2}

C

π4\frac {\pi}{4}

D

π2\frac {\pi}{2}

Answer

π4\frac {\pi}{4}

Explanation

Solution

0πecos⁡ xsinx(1+cos2x)(ecos⁡ x+ecos⁡ x)dx\int\limits_0^π \frac {e^{cos⁡\ x} sin⁡x}{(1+cos^2⁡x)(e^{cos⁡\ x}+e^{−cos⁡\ x})}dx
Let cos x=tcos\ x = t
sin x dx=dtsin\ x\ dx = dt
Then _, _11etdt(1+t2)(et+et)\int\limits_{-1}^1 \frac {−e^tdt}{(1+t^2)(e^t+e^{−t})}
Let I=11etdt(1+t2)(et+et)I =\int\limits_{-1}^1 \frac {−e^tdt}{(1+t^2)(e^t+e^{−t})} …..…(1)
I=11etdt(1+t2)(et+et)I =\int\limits_{-1}^1 \frac {−e^tdt}{(1+t^2)(e^{−t}+e^t)} ….…(2)
On adding eq(1) and eq(2)
2I=11dt1+t22I = \int\limits_{-1}^1 \frac {dt}{1+t^2}

2I=tant]112I = tan−t]_{−1}^1

2I=π4(π4)2I = \frac {\pi}{4}−(−\frac {\pi}{4})

2I=π22I = \frac {π}{2}

I=π4I = \frac {π}{4}

So, the correct option is (C): π4\frac {π}{4}