Question
Mathematics Question on Definite Integral
The value of 0∫π(1+cos2x)(ecos x+e−cos x)ecos xsinxdx is equal to :
A
4π2
B
2π2
C
4π
D
2π
Answer
4π
Explanation
Solution
0∫π(1+cos2x)(ecos x+e−cos x)ecos xsinxdx
Let cos x=t
sin x dx=dt
Then _, _−1∫1(1+t2)(et+e−t)−etdt
Let I=−1∫1(1+t2)(et+e−t)−etdt …..…(1)
I=−1∫1(1+t2)(e−t+et)−etdt ….…(2)
On adding eq(1) and eq(2)
2I=−1∫11+t2dt
2I=tan−t]−11
2I=4π−(−4π)
2I=2π
I=4π
So, the correct option is (C): 4π